期刊文献+

机器学习辅助的WiFi位置指纹算法研究 被引量:2

Research on WiFi location fingerprinting algorithm assisted by machine learning
下载PDF
导出
摘要 随着室内定位市场的不断扩大,人们对室内定位技术的要求越来越高。现有的WiFi位置指纹定位技术容易受到外部环境变化的影响,导致在中空楼宇进行平面定位时,存在将待定位点定位到中空区域的问题,不利于后续的导航规划。为了弥补这一不足,提出了一种基于机器学习辅助的WiFi位置指纹算法,通过机器学习将定位区域分割为不同的子区域,有效地避免了中空区域的误定位问题。实验结果表明,所提出的定位算法可以解决中空区域的误定位问题,具有较高的定位精度。 With the continuous expansion of the indoor positioning market, people’s requirements for indoor positioning technology are getting higher and higher. The existing WiFi location fingerprinting positioning technology is easily affected by changes in the external environment, resulting in the problem of locating the to-be-located point to the hollow area when performing plane positioning in a hollow building, which is not conducive to subsequent navigation planning. In order to make up for this deficiency, a WiFi location fingerprinting algorithm assisted by machine learning is proposed, which divides the positioning area into different sub-regions through machine learning is proposed, thus effectively avoiding the problem of false positioning in hollow areas. The experimental results show that the proposed localization algorithm can effectively solve the problem of false localization in hollow areas and achieve high localization accuracy.
作者 杨家强 别昊泽 张更新 唐华鹏 秦丹阳 YANG Jiaqiang;BIE Haoze;ZHANG Gengxin;TANG Huapeng;QIN Danyang(College of Electronie Engineering,Heilongjiang University,Harbin 150080,China)
出处 《黑龙江大学自然科学学报》 CAS 2023年第1期92-97,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金(61771186) 黑龙江省自然科学基金优秀青年项目(YQ2020F012)。
关键词 WIFI 室内定位 机器学习 中空区域 WiFi indoor positioning machine learning hollow area
  • 相关文献

参考文献7

二级参考文献27

共引文献83

同被引文献36

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部