期刊文献+

6-UPS并联机器人动力学参数辨识 被引量:2

Dynamic parameter identification of a 6-UPS parallel robot
下载PDF
导出
摘要 为了获得精确的并联机器人动力学模型,以6-UPS并联机器人为研究对象进行了参数辨识。通过牛顿-欧拉法结合并联机构的对称性和各关节的重复性,简化了6-UPS并联机器人的动力学模型,并转换成了关于基参数集的线性形式。为了提高辨识精度,提出将机器人的惯性参数和摩擦参数分步辨识的策略并对比了不同摩擦模型的辨识效果。通过运行不同轨迹的辨识实验对比驱动力与预测力的误差大小来验证辨识效果,结果表明,惯性参数和摩擦参数分步辨识能提高辨识精度,Daemi-Heimann模型相比于库仑-黏滞摩擦模型的辨识结果精度更高。 In order to obtain an accurate parallel robot dynamics model,a 6-UPS parallel robot is selected as the research object.The dynamics model of the 6-UPS parallel robot is simplified by Newton-Euler method combined with the symmetry of the parallel mechanism and the repeatability of each joint,and it is converted into a linear form of the base parameter set.The strategy of stepwise identification of the inertial parameters and friction parameters of the robot and different friction models are proposed to improve the identification accuracy.It verifies that the identification experiments of different trajectories compares the error of driving force and predictive force,shows that the identification of inertial parameters and friction parameters can improve the identification accuracy and the Daemi-Heimann model has higher accuracy than the Coulomb-viscous friction model.
作者 沈耀辉 张学祥 王若冰 刘艳梨 李耀 吴洪涛 Shen Yaohui;Zhang Xuexiang;Wang Ruobin;Liu Yanli;Li Yao;Wu Hongtao(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Jiangsu Nanjing,210016,China)
出处 《机械设计与制造工程》 2023年第3期20-26,共7页 Machine Design and Manufacturing Engineering
基金 国家重点研发计划项目(2018YFC0309100) 国家自然科学基金面上项目(51975277)。
关键词 6-UPS并联机器人 牛顿-欧拉法 动力学模型 参数辨识 6-UPS parallel robot Newton-Euler method dynamic model parameter identification
  • 相关文献

参考文献2

二级参考文献15

  • 1Koo K M, Kim J H. Robust control of robot manipulators with parametric uncertainty [ J ]. IEEE Transactions on Automatic Control, 1994, 39 ( 6 ) : 1230-1233. 被引量:1
  • 2Karakasoglu A, Sundareshan M K. A recurrent neural network-based adaptive variable structure model- following control of robotic manipulators [ J ]. Automatica, 1995,31 (10) : 1495-1507. 被引量:1
  • 3Kim E. Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic [ J ]. IEEE Transactions on Fuzzy Systems, 2004, 12(3) :368-378. 被引量:1
  • 4Watanabe K, Izumi K, Otsubo T. A nonlinear robust control using a fuzzy reasoning and its application to a robot manipulator [ J ]. Journal of Intelligent and Robotic Systems, 1997,20(2-4 ) :275-294. 被引量:1
  • 5Hou Zhongsheng, Jin Shangtai. Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems [ J ]. IEEE Transactions on Neural Networks,2011,22(12) :2173-2188. 被引量:1
  • 6Hou Zhongsheng, Jin Shangtai. A novel data-driven control approach for a class of discrete-time nonlinear systems [ J ]. IEEE Transactions on Control Systems Technology,2011,19 ( 6 ) : 1549-1558. 被引量:1
  • 7Kikuuwe R, Yasukouchi S, Fujimoto H, et al. Proxy- based sliding mode control:A safer extension of PID position control [ J ]. IEEE Transactions on Robotics, 2010,26 (4) :670-683. 被引量:1
  • 8Hou Zhongsheng, Jin Shangtai. Model free adaptive control: Theory and applications [ M ]. Boca Raton, Florida, USA : Crc Press ,2013. 被引量:1
  • 9刘静,甘屹,潘双夏.基于虚拟样机的挖掘机器人液压缸内摩擦力确定方法研究[J].机械设计,2008,25(8):30-32. 被引量:7
  • 10侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667. 被引量:220

共引文献17

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部