期刊文献+

上海市COVID-19发病率的空间特征以及影响因素分析

Spatial characteristics and influencing factors of the incidence rate of COVID-19 in Shanghai
原文传递
导出
摘要 目的 探究上海市COVID-19疫情的空间分布特征,分析各类影响因素对疫情传播的影响。方法 收集2022年3月1日―2022年5月31日上海市各行政区卫生健康委员会官网的COVID-19疫情数据,采用GeoDa软件进行空间自相关回归分析。选择2021年上海市各行政区统计年鉴中典型的人口、经济、医疗等因素的变量,采用相关性以及多重共线性分析进行筛选,最后纳入4个自变量进入模型。在普通最小二乘线性(ordinary least square, OLS)模型、空间滞后模型(spatial lag model, SLM)、空间误差模型(spatial error model, SEM)中,优选OLS模型作为影响本轮疫情影响因素的模型。结果 本轮上海市疫情传播具有全局空间聚集性,其中虹口区、静安区、黄浦区和徐汇区为高-高聚集区(high-high area, HH),在松江区和金山区为低-低聚集区(low-low area, LL),其余区域局部Moran’s I不显著。OLS模型提示,人口密度与人均GDP为COVID-19发病率的促进因素,单位医院数量与人均公共财政教育支出则与COVID-19发病率无显著相关性。结论 目前在SARS-CoV-2回归“乙类乙管”防控措施后,鼓励居民自我健康管理,做好个人健康监测,外出旅游时,加强健康防护;感染COVID-19轻症状和无症状患者提倡居家隔离,重症状患者则及时前往医院治疗。 Objective The spatial characteristics of COVID-19 in Shanghai were investigated based on spatial autocorrelation analysis, and the impact of various vital factors on the spread of COVID-19 was also analyzed. Methods The COVID-19 epidemic data published on the official website of the Shanghai Municipal Health Commission from March 1, 2022, to May 31, 2022, were collected. And the GeoDa software was used for spatial autocorrelation regression analysis. We selected the typical data in demongraphic, economic, medicine and policy strategies from the 2021 statistical yearbook in each Shanghai administration region. Subsequently, we screened out four variables by correlation analysis and multicollinearity analysis. The ordinary least squares model(OLS) test was preferentially selected to analyze the transmission factors among OLS model, spatial lag model(SLM) and spatial error model(SEM). Results The spread of the epidemic in Shanghai was spatially concentrated, with high-high areas(HH) in Hongkou District, Jingan District, Huangpu District and Xuhui District, low-low areas(LL) in Songjiang District and Jinshan District, and Moran’s I insignificance in other areas. The OLS model indicated that population density and GDP per capita positively affected the COVID-19 prevalence rate, while number of hospitals per unit and public expenditure on education per capita had no significance. Conclusions Currently, after China manage COVID-19 with measures against Class B infectious disease, residents are encouraged to manage their own health, to do personal health monitoring, to strengthen health protection when traveling. The mild and asymptomatic COVID-19 cases should be isolated at home, while the severe cases should be treated in hospital.
作者 沈佳莹 范君言 赵岳 牛喆韵 蒋栋铭 张子涵 曹广文 SHEN Jia-ying;FAN Jun-yan;ZHAO Yue;NIU Zhe-yun;JIANG Dong-ming;ZHANG Zi-han;CAO Guang-wen(Tongji University School of Medicine,Tongji University,Shanghai 200331,China;Department of Epidemiology,Faculty of Naval Medicine,Naval Medical University,Shanghai 200433,China)
出处 《中华疾病控制杂志》 CAS CSCD 北大核心 2023年第3期321-325,共5页 Chinese Journal of Disease Control & Prevention
基金 国家自然科学基金(82041022) 上海科学技术委员会研究项目(20JC1410200,20431900404)。
关键词 新型冠状病毒肺炎 空间相关 空间集聚性 普通最小二乘线性模型 COVID-19 Spatial autocorrelation Spatial agglomeration Ordinary least square model
  • 相关文献

参考文献5

二级参考文献35

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部