期刊文献+

利用局部监督的跨模态行人重识别研究

Cross-modality person re-identification using local supervision
下载PDF
导出
摘要 跨模态行人重识别技术旨在从非重叠视域不同模态的摄像头捕获的行人图像中,识别出特定行人,行人图像间存在巨大的跨模态差异以及模态内部差异,导致识别率不高。为此,提出了一种利用局部监督的跨模态行人重识别方法(LSN)。首先将可见光图像转换成与红外图像更为接近的灰度图像,在图像层面缓解跨模态的差异,并使用共享参数的双流网络,提取具有判别性的共享特征,在特征层面缓解跨模态差异;其次,设计了局部监督网络,增强了对背景、遮挡等噪声的鲁棒性,缓解了模态内部差异;最后,设计了跨模态分组损失、联合身份损失对网络进行约束。实验结果显示,在SYSU-MM01数据集上,评价指标rank-1和mAP分别达到了53.31%、50.88%;在RegDB数据集上,达到了73.51%、68.55%,实验结果优于同类方法,验证了该方法的有效性和先进性。 Cross-modality person re-identification technique aims to identify specific pedestrians from pedestrian images captured by cameras with different modalities in non-overlapping fields of view.There are huge cross-modality differences between pedestrian images as well as intra-modality differences,resulting in poor recognition rates.In order to solve this problem,this paper proposed a cross-modality person re-identification method using local supervision(LSN).Firstly,it converted the visible images into grayscale images that were closer to the infrared images to mitigate the cross-modality differences at the image level,and extracted discriminative shared features using a two-stream network with shared parameters to mitigate the cross-modality differences at the feature level.Secondly,it designed a local supervision network to enhance the robustness to background,occlusion and other noises and mitigate the intra-modality differences.Finally,it designed a cross-modality group loss in combination with the identity loss to constrain the network.The experimental results show that the evaluation metrics rank-1 and mAP reach 53.31%and 50.88%on the SYSU-MM01 dataset,and 73.51%and 68.55%on the RegDB dataset,respectively.The experimental results outperform similar methods,which verifies the effectiveness and advancement of the proposed method.
作者 江锴威 王进 张琳钰 芦欣 刘国庆 Jiang Kaiwei;Wang Jin;Zhang Linyu;Lu Xin;Liu Guoqing(School of Information Science&Technology,Nantong University,Nantong Jiangsu 226000,China;School of Computer&Information Engineering,Nantong Institute of Technology,Nantong Jiangsu 226000,China;Zhongtian Smart Equipment Co.,Ltd.,Nantong Jiangsu 226010,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第4期1226-1232,共7页 Application Research of Computers
基金 国家自然科学基金资助项目(62002179) 2022年南通市科技计划资助项目(JC22022063)。
关键词 跨模态行人重识别 智能安防 双流网络 局部监督 跨模态分组损失 cross-modality person re-identification intelligent security two-stream network local supervision cross-modality group loss
  • 相关文献

参考文献8

二级参考文献23

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部