期刊文献+

基于卫星资料的合肥市热岛效应时空演变及其影响因子分析 被引量:2

Analysis of spatiotemporal evolution and influencing factors of heat island effect in Hefei based on satellite data
下载PDF
导出
摘要 为研究合肥市近二十年的城市格局演变和热岛效应变化,基于2005、2009、2015、2020年每年10月份的Landsat卫星影像对合肥地区进行了土地分类以及地表温度反演,并提取归一化差值裸地与建筑指数(NDBBI)、植被覆盖度(FVC)、改进的归一化差异水体指数(MNDWI)以及人口密度进行了多元回归分析,进而建立数学模型对合肥主城区的热岛效应及影响因子进行了分析。结果表明:(1)从2005年到2020年,强热岛区增加了15.03 km^(2)。热岛标准差椭圆分布方向为东北—西南方向,椭圆的范围逐年扩大,热岛质心集中在蜀山经开区,且81.90%的强热岛区为较高与高核密度工业区。(2)地理探测器分析结果表明各影响因子对地表温度的解释力从大到小为:NDBBI(0.542)、MNDWI(0.409)、FVC(0.379)和人口密度(0.018)。(3)岭回归处理后的多元线性模型(R2=0.654)研究结果表明,影响地表温度的主要因子为NDBBI,而人口密度的影响则较小。(4)地理加权回归模型(GWR)的分析表明,各点的相关系数R2在0.489~0.667之间,建筑物与道路密集的城建区R2最高。NDBBI高值集中在经开区等地,最高值达到0.9以上,在GWR模型中人口的系数依然很小,FVC系数高值区集中在植被覆盖率高的区域,而MNDWI高值区则主要分布于水域。 In order to study the evolution of urban pattern and the change of heat island effect in Hefei in recent 20 years,land classification and land surface temperature inversion were carried out based on the Landsat satellite images of October 2005,October 2009,October 2015 and October 2020.The normalized difference between bare land and building index(NDBBI),fraction vegetation coverage(FVC),modified normalized difference water index(MNDWI)and population density were extracted for multiple regression analysis,and then a mathematical model was established to analyze the heat island effect and its influencing factors in the main urban area of Hefei.The results show that:(1)From 2005 to 2020,the strong heat island area has increased by 15.03 km^(2).The distribution direction of standard deviation ellipse of heat island is from northeast to southwest,and the scope of the ellipse is expanding year by year.The mass center of heat island is concentrated in Shushan Economic Development Zone,and 81.90%of the strong heat island areas are high-density industrial areas,indicating a good corresponding relationship between the strong heat island areas and high-density industrial areas.(2)The analysis results of geographical detector show that the explanatory power of each influencing factor on land surface temperature from large to small is,NDBBI(0.542),MNDWI(0.409),FVC(0.379)and population density(0.018).(3)The results of multivariate linear model(R2=0.654)indicate that the main factors affecting land surface temperature is NDBBI,while the population density has little effect.(4)The analysis of geographical weighted regression(GWR)model shows that the R2 of each point is in the range of 0.489-0.667,and the R2 of urban construction area with dense buildings and roads is highest.The high value of NDBBI coefficient is concentrated in the economic development zone and other places,with the highest value reaching more than 0.9,the coefficient of population density is still very small,the high value areas of FVC coefficient are concent
作者 赵强 谭璐 方潜生 刘常瑜 马可 朱曙光 ZHAO Qiang;TAN Lu;FANG Qiansheng;LIU Changyu;MA Ke;ZHU Shuguang(School of Environment and Energy Engineering,Anhui Jianzhu University,Hefei 230601,China;Anhui Institute of Carbon Emission Peak and Carbon Neutrality in Urban-Rural Development,Hefei 230601,China)
出处 《大气与环境光学学报》 CAS CSCD 2023年第2期153-167,共15页 Journal of Atmospheric and Environmental Optics
基金 安徽省教育厅重大项目(KJ2017ZD41) 国家自然科学基金项目(41005016) 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2020036) 安徽省高校优秀科研创新团队项目(2022AH010018) 2021年安徽省大学生创新训练项目。
关键词 地表温度 热岛效应 地理探测器 岭回归 多元回归模型 surface temperature heat island effect geographic detector ridge regression multiple regression model
  • 相关文献

参考文献16

二级参考文献224

共引文献4833

同被引文献45

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部