期刊文献+

内容分发网络中基于雾计算的载荷调度算法

Load Scheduling Algorithm Based on Fog Computing in Content Distribution Network
下载PDF
导出
摘要 针对基于云计算技术的内容分发网络不足以应对大规模业务响应所需的数据计算能力问题,以服务质量(quality of service,QoS)为目标,提出一种基于雾计算的载荷调度算法。算法引入权重机制评估雾节点的载荷度,引入多个指标考察个体节点的可用资源以及个体节点在全网中的载荷响应能力。以此为依据为每一个雾计算设备个性化地定制派送数据分组方案,同时能够在大规模数据转发情形下自适应更新自身的计算受理能力。测试数据表明,算法能够以较低的代价赢得良好QoS。 The large-scale increase of user centered intelligent communication devices in the Internet of things tends to shift the computing focus of network data services to the edge user side.The content distribution network based on cloud computing technology is not enough to deal with the data computing capacity required for large-scale business response.Aiming at this problem,a load scheduling algorithm based on fog calculation with the goal of quality of service is proposed.The algorithm evaluates the load degree of fog nodes by introducing the weight mechanism,and investigates the available resources of individual nodes and the load response ability of individual nodes in the whole network by introducing multiple indicators.On this basis,the delivery data grouping scheme is customized for each fog computing device.At the same time,it can adaptively update its computing acceptance ability in the case of large-scale data forwarding.Test data show that the algorithm can win good QoS at a low cost.
作者 黄金凤 HUANG Jinfeng(Intelligent Transportation Research Institute,Fujian Chuanzheng Communications College,Fuzhou 350007,China)
出处 《枣庄学院学报》 2023年第2期62-66,共5页 Journal of Zaozhuang University
基金 福建省自然科学基金资助项目(2021J01339) 教育部科技发展中心“新一代信息技术创新项目”(2019ITA01022)。
关键词 雾计算 自适应 响应 载荷 fog calculation adaptive response load
  • 相关文献

参考文献8

二级参考文献48

  • 1M. Armbrust, et al, "A view of cloud comput- ing", Communications of the ACM, vol.53, no.4, pp 50-58, 2010. 被引量:1
  • 2J. Manyika, et al, "Big data: The next frontier for innovation, competition, and productivity", The McKinsey Global Institute, vol.5, no.33, pp 222, 2011. 被引量:1
  • 3F. Bonomi, et al, "Fog computing and its role in the internet of things", Proceedings of the first edition of the MCC workshop on Mobile cloud computing, ACM, pp 13-16, 2012. 被引量:1
  • 4G, Vilutis, et al, "Model of load balancing and scheduling in Cloud computing", Information Technology Interfaces (ITI), Proceedings of the 11-1 2072 34th International Conference on. IEEE, pp 117-122, 2012. 被引量:1
  • 5B. Mondal, D. Kousik, and D. Paramartha, "Load balancing in cloud computing using stochastic hill climbing-a soft computing approach", Pro- cedia Technology, no.4, pp 783-789, 2012. 被引量:1
  • 6RV. Krishna, "Honey bee behavior inspired load balancing of tasks in cloud computing environ- ments", Applied Soft Computing, vo1.13, no.5, pp 2292-2303, 2013. 被引量:1
  • 7K. Mukherjee and G. Sahoo, "Mathematical model of cloud computing framework using fuzzy bee colony optimization technique", Ad- vances in Computing, Control, & Telecommuni- cation Technologies, ACT'09. International Con- ference on. IEEE, pp 664-668, 2009. 被引量:1
  • 8G.B. Zheng, "Achieving high performance on extremely large parallel machines: Performance prediction and load balancing", Ph.D. Thesis. Urbana, Illinois: University of Illinois at Urba- na-Champaign, 2005. 被引量:1
  • 9T. Agarwal, "Strategies for topology-aware task mapping and for rebalancing with bounded mi- grations Urbana", Illinois: University of Illinois at Urbana-Champaign, 2005. 被引量:1
  • 10O.A. Rahmeh, R Johnson and A. Taleb-Bendiab, "A dynamic biased random sampling scheme for scalable and reliable grid networks", INFO- COMP Journal of Computer Science, vol.7,no.4, pp 1-10, 2008. 被引量:1

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部