期刊文献+

Research on Rainfall Estimation Based on Improved Kalman Filter Algorithm

下载PDF
导出
摘要 In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the rainfall estimation model of radar combined with rain gauge which calibrated by common Kalman filter.After data preprocessing,the radar data should be classified according to the precipitation intensity.And then,they are respectively substituted into the improved filter for calibration.The state noise variance Q(k)and the measurement noise variance R(k)can be adaptively calculated and updated according to the input observation data during this process.Then the optimal parameter value of each type of precipitation intensity can be obtained.The state noise variance Q(k)and the measurement noise variance R(k)could be assigned optimal values when filtering the remaining data.This rainfall estimation based on semiadaptive Kalman filter calibration not only improves the accuracy of rainfall estimation,but also greatly reduces the amount of calculation.It avoids errors caused by repeated calculations,and improves the efficiency of the rainfall estimation at the same time.
出处 《Journal of Quantum Computing》 2022年第1期23-37,共15页 量子计算杂志(英文)
基金 This work was supported by the National Natural Science Foundation of China(Grant No.42075007) the Open Grants of the State Key Laboratory of Severe Weather(No.2021LASW-B19).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部