期刊文献+

Prediction and Optimization of the Thermal Properties of TiO_(2)/Water Nanofluids in the Framework of a Machine Learning Approach

下载PDF
导出
摘要 In this study,comparing multiple models of machine learning,a multiple linear regression(MLP),multilayer feed-forward artificial neural network(BP)model,and a radial-basis feed-forward artificial neural network(RBF-BP)model are selected for the optimization of the thermal properties of TiO_(2)/water nanofluids.In particular,the least squares support vector machine(LS-SVM)method and radial basis support vector machine(RB-SVM)method are implemented.First,curve fitting is performed by means of multiple linear regression in order to obtain bivariate correlation functions for thermal conductivity and viscosity of the nanofluid.Then the aforementioned models are used for a predictive analysis of the dependence of its thermal conductivity and viscosity on temperature and volume fraction.The results show that the least squares support vector machine(LS-SVM)has a prediction accuracy higher than the other models.The model predicts the thermal conductivity of TiO_(2)/water MSE=1.0853×10^(-6),R2=0.99864,MAE=0.00092,RMSE=0.00104,and the viscosity of TiO_(2)/water MSE=8.1397×10^(-6),R2=0.99995,MAE=0.00074,RMSE=0.0009.
出处 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2181-2200,共20页 流体力学与材料加工(英文)
基金 supported by the National Natural Science Foundation of China(Nos.51966005,51866003) Yunnan Basic Research Program Project(2019FB071).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部