期刊文献+

黄河中游典型流域水文统计模型精度集合评价 被引量:2

Accuracy Collective Assessment of Hydrological Model in Typical Basin of Middle Reaches of the Yellow River
下载PDF
导出
摘要 基于主成分分析法、层次分析法和综合得分法,构建多层次多指标的模拟精度评价指标体系,探究体系化的综合模型精度集合评价。选取黄河中游典型流域内7个水文站的水文资料,依据较为广泛应用的4个水文模型建立基于降雨量的倍比、线性及不同指数下的水沙拟合公式,以径流突变年份划分序列率定期和验证期,评价模型在率定前后精度,通过对比最优精度模型与实测数据下降雨及人类活动对水沙变化的贡献率,验证该评价指标体系的准确性。综合得分表明各模型精度接近,总体表现为率定期精度高于验证期,研究得到了率定期及验证期内各水文站的最优精度模型。与实测序列驱动因素贡献率对比发现,最优精度模型计算出的贡献率最接近实测值贡献率,能够反映出与实测序列相同的水沙变化情况。 Based on principal component analysis(PCA),analytic hierarchy process(AHP)and comprehensive score method,a multi⁃in⁃dex simulation accuracy evaluation system was built in this study to explore the systematic comprehensive model accuracy set evaluation.The fitting formulas of regional multiple ratio,linearity and rainfall runoff with different indexes were established by using the rainfall and runoff data of the 7 hydrological stations in the middle reaches of the Yellow River and the more widely used 4 hydrological models.The research se⁃quence was divided into calibration and validation periods by runoff simulation mutation year,and then each the simulation accuracy of each model in calibration and validation periods was evaluated by simulation accuracy evaluation system.More concretely,the accuracy of the evaluation system was verified by comparing the contribution rate of rainfall and human activities to the change of water and sediment under the optimal accuracy model and the measured data.Conclusion:the comprehensive score shows that the accuracy of each model is close,while the overall performance is that the accuracy of periodic rate is higher than that in the verification period.The optimal accuracy model of each station in the regular rate and the verification period is obtained.Compared with the contribution rate of the driving factors of the measured se⁃quence,the optimal accuracy model was closest to the contribution rate of the measured value,and can reflect the same water and sediment changes as the measured sequence.
作者 刘昱 于坤霞 李鹏 李占斌 张晓明 LIU Yu;YU Kunxia;LI Peng;LI Zhanbin;ZHANG Xiaoming(Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions,Xi’an University of Technology,Xi’an 710048,China;Shaanxi Fuyuan Hydropower Engineering Co.,Ltd.,Xianyang 712000,China;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,CAS&MWR,Yangling 712100,China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing 100048,China)
出处 《人民黄河》 CAS 北大核心 2023年第4期20-27,共8页 Yellow River
基金 国家重点研发计划项目(2016YFC0402407) 国家自然科学基金面上项目(51879281)。
关键词 模型精度 集合评价 评价体系 综合得分 水文统计模型 黄河中游 model accuracy collective assessment evaluation system comprehensive score hydrologic statistical model middle Yellow River
  • 相关文献

参考文献15

二级参考文献277

共引文献301

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部