期刊文献+

深度学习驱动的CT影像肺结节检测:挑战、进展和展望 被引量:2

Deep Learning-driven Pulmonary Nodule Detection from CT Images:Challenges,Current Status and Future Directions
下载PDF
导出
摘要 基于CT影像进行肺结节自动检测可以显著提高肺癌诊治效果。该文结合CT影像和肺结节的特点,总结了基于各种深度学习模型的CT影像肺结节检测面临的挑战和近期研究进展,重点分析了标志性成果和它们的优缺点。结合当前肺结节检测应用的现状,对未来更好地应用和改进基于深度学习的CT影像肺结节检测技术提出了展望。 Automatic detection of pulmonary nodule based on CT images can significantly improve the diagnosis and treatment of lung cancer.Based on the characteristics of CT image and pulmonary nodule,this study summarizes the challenges and recent progresses of CT image-based pulmonary nodule detection using various deep learning models.The study focuses on the review of major research developments by investigating their technical details,strengths and shortcomings.In light of the current application status of pulmonary nodule detection,a research agenda that aims to better apply and improve deep learning-driven pulmonary nodule detection technologies was given in this study.
作者 谭双平 张彤 祖江林 邓友锋 吴下里 魏杰 严馨月 TAN Shuangping;ZHANG Tong;ZU Jianglin;DENG Youfeng;WU Xiali;WEI Jie;YAN Xinyue(The First People’s Hospital of Jiangxia District of Wuhan,Wuhan,430200;State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan,430079)
出处 《中国医疗器械杂志》 2023年第2期163-172,共10页 Chinese Journal of Medical Instrumentation
基金 武汉市卫生健康科研基金重点项目(WX20A11)。
关键词 深度学习 CT影像 肺结节检测 deep learning CT image pulmonary nodule detection
  • 相关文献

参考文献8

二级参考文献17

共引文献343

同被引文献39

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部