期刊文献+

复杂光照下的交通标志检测与识别 被引量:1

Traffic Sign Detection and Recognition under Complicated Illumination
下载PDF
导出
摘要 针对不同光照下交通标志图像检测与识别困难的问题,提出一种基于Retinex-Gamma的光照图像增强算法,该算法与Mask R-CNN相结合,称为Retinex-Gamma-Mask R-CNN算法.首先,基于光照反射成像模型将图像RGB空间转换为HSV空间,对V通道进行多尺度高斯滤波处理获得光照分量,利用光照分量提取反射分量,并对反射分量进行线性拉升优化;其次,利用光照分量的分布特征进行二维Gamma函数调整,并获得优化后的亮度分量;最后,利用混合空间增强法获得增强后的V通道,重新构造图像.实验采用的ZCTSDB数据集共有15724幅图像,包含不同光照的驾驶环境.实验结果表明,与标准Mask R-CNN相比,Retinex-Gamma-Mask R-CNN算法对交通标志的目标检测的均值平均精度提升了0.161%,对交通标志的实例分割的均值平均精度提升了0.363%. In order to deal with the difficulty of traffic sign image detection and recognition under different illumination condition,an illumination image enhancement algorithm based on Retinex-Gamma is proposed.The algorithm is combined with Mask R-CNN,which is called Retinex-Gamma Mask R-CNN algorithm.Firstly,based on the illumination reflection imaging model,the image RGB space is transformed into HSV space,the V channel is processed by multi-scale Gaussian filtering to obtain the illumination component,the illumination component is used to extract the reflection component,and the reflection component is linearly optimized.Secondly,the two-dimensional Gamma function is adjusted by using the distribution characteris-tics of illumination components,and the optimized brightness components are obtained.Finally,the en-hanced V channel is obtained by using the mixed space enhancement method to reconstruct the image.The ZCTSDB dataset used for the experiment has a total of 15724 images and contains driving environments with different lighting.The experimental results show that compared with the standard Mask R-CNN,the average accuracy of Retinex-Gamma-Mask R-CNN algorithm for target detection of traffic signs is im-proved by 0.161%,and the average accuracy of instance segmentation of traffic signs is improved by 0.363%.
作者 项新建 姚佳娜 黄炳强 杨松 武晓莉 Xiang Xinjian;Yao Jiana;Huang Bingqiang;Yang Song;Wu Xiaoli(School of Automation and Electrical Engineering,Zhejiang University of Science and Technology,Hangzhou 310023;Intelligent Transportation Research Institute,Zhejiang Scientific Research Institute of Transport,Hangzhou 310009)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第2期293-302,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 浙江省公益技术研究计划项目(LGG19F030005).
关键词 智能交通 交通标志识别 Mask R-CNN 交通标志 低光照 光照图像增强 intelligent transportation traffic sign recognition Mask R-CNN traffic sign low light illumination image enhancement
  • 相关文献

参考文献1

二级参考文献2

共引文献97

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部