期刊文献+

基于文本挖掘和情感分析方法的“智慧旅游”服务质量感知研究 被引量:1

Research on Service Quality Perception of“Smart Tourism”Based on Text Mining and Sentiment Analysis Methods
下载PDF
导出
摘要 智慧旅游是推动智慧城市发展的重要手段。随着网络评论在旅游生态中的地位显著提升,如何通过网评文本反映游客的消费体验、服务质量反馈与情感诉求,吸引游客消费、取得竞争优势,成为景区管理人员与主管部门的一项重要工作。基于文本挖掘和情感分析方法,选取景区和酒店网评文本,识别旅游景点现状的问题和痛点,设计科学、客观的综合评价体系,为景区与酒店等相关经营者、文旅部门做出更优决策提供理论支撑和数据支持。 Smart tourism is an important means to promote the development of the smart city.With the significant promotion of online comments in the tourism ecology,how to reflect tourists'consumption experience,service quality feedback and emotional demands through online comments text,so as to attract tourists'consumption and gain competitive advantages,has become an important task for scenic spot managers and competent departments.Based on text mining and sentiment analysis methods,the online comments text of scenic spots and hotels are selected to identify the problems and pain points of the current situation of tourist attractions,and a scientific and objective comprehensive evaluation system is designed to provide theoretical and data support for the scenic spots,hotels and other related operators and cultural tourism departments to make better decisions.
作者 郭佳怡 方博平 陆欣怡 王妮 宋涛 GUO Jiayi;FANG Boping;LU Xinyi;WANG Ni;SONG Tao(School of Science,Huzhou University,Huzhou 313000,China;Huzhou Key Laboratory of Data Modeling and Analysis,Huzhou 313000,China)
出处 《现代信息科技》 2023年第6期1-5,12,共6页 Modern Information Technology
基金 浙江省自然科学基金(Z22A013952) 浙江省教育厅科研项目资助(Y202248528) 浙江省大学生科技创新活动计划项目新苗人才计划(2022R431A016) 湖州师范学院大学生创新创业训练科研项目(202101172)。
关键词 智慧旅游 情感分析 TF-IDF算法 DBSCAN聚类 LDA主题模型 smart tourism sentiment analysis TF-IDF algorithm DBSCAN clustering LDA theme model
  • 相关文献

参考文献7

二级参考文献72

  • 1刘怀亮,张治国,马志辉,孙蕾.基于SVM与KNN的中文文本分类比较实证研究[J].情报理论与实践,2008,31(6):941-944. 被引量:10
  • 2刘群,李素建.基于《知网》的词汇语义相似度的计算[EB/OL].[2011-02-15].http://wenku.baidu.com/view/b213af9951e79b8968022660.html. 被引量:4
  • 3杨学成,王镠莹.产品的搜寻、经验和信任属性对手机购买行为的影响——基于焦点座谈小组的归纳性分析[J].当代经济管理,2007,29(5):40-45. 被引量:2
  • 4Blei DM, Ng AY, Jordan MJ. Latent Dirichlet Allocation [ J ]. Journal of Machine Learning Research, 2003 (3) :993-1022. 被引量:1
  • 5Wei Xing, Croft W Bruce. LDA- based Document Models for Ad- Hoc Retrieval[ C]. Proceedings of the SIGIR. S eat t le, Washington, USA, 2006: 178-185. 被引量:1
  • 6Hristovski D, Friedman C, Rindflesch T C, et al. Literature- Based Knowledge Discovery using Natural Language Processing [ J ]. Literature - based Discovery, Information Science and Knowledge Management, 2008 (15) :133 152. 被引量:1
  • 7Kobayashi N, K Inni, Y Matsumoto, et al. Collecting Evalu- ative Expressions for Opinion Extraction [ C ]. Proceedings of Natural Language Proeess-lJCNLP 2004,2005:596-605. 被引量:1
  • 8Zhuang L, F Jing, X Y Zhu, et al. Movie Review Mining and Summarization] C]. Proceedings of the 15th ACM International Conference on Information and Knowledge Management 2006:43 -50. 被引量:1
  • 9Popescu AM, Etzioni O. Extracting Product Features and Opin- ions from Reviews[ C ]. Proc. of the Conference on Human Lan- guage Technology and Empirical Methods in Natural Language Proc. Stroudsburg, DA, USA: Association for Computational Linguistics ,2005:339-346. 被引量:1
  • 10Hu MQ, Liu B. Mining Opinion Features in Customer Reviews [ C]. Proc. of 9th National Conference on Artificial Intelligence. Men lo Park, CA, USA: American Association for Artificial In- telligence, 2004:755-760. 被引量:1

共引文献59

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部