摘要
PID(proportional-integral-derivative)control is recognized to be the most widely and successfully employed control strategy by far.However,there are limited theoretical investigations explaining the rationale why PID can work so well when dealing with nonlinear uncertain systems.This paper continues the previous researches towards establishing a theoretical foundation of PID control,by studying the regulation problem of PID control for nonaffine uncertain nonlinear stochastic systems.To be specific,a three dimensional parameter set will be constructed explicitly based on some prior knowledge on bounds of partial derivatives of both the drift and diffusion terms.It will be shown that the closed-loop control system will achieve exponential stability in the mean square sense under PID control,whenever the controller parameters are chosen from the constructed parameter set.Moreover,similar results can also be obtained for PD(PI)control in some special cases.A numerical example will be provided to illustrate the theoretical results.
基金
supported by the National Natural Science Foundation of China under Grant No.12288201.