期刊文献+

基于LSTM模型的在线地图路段交通状态预测 被引量:1

Road Traffic Status Prediction of Online Map Based on LSTM Model
下载PDF
导出
摘要 为准确及时地预测城市道路交通状态,帮助管理部门实施交通管理措施,预防交通拥堵发生,文章实时获取在线地图交通状态数据,将其划分为路段粒度后,使用路段上下游以及对向车道交通状态作为特征矩阵输入LSTM网络模型,对路段工作日的交通状态进行预测,并与单路段交通状态作为特征矩阵输入的结果和其他模型结果做对比。实验结果表明,考虑多路段LSTM网络模型预测的平均MAE、RMSE和准确率分别为3.797、6.263和82.15%,证明了LSTM网络模型能较好地预测对路段状态,且考虑到路段上下游车道状态因素相对于单纯考虑路段的交通状态可以提高预测精度。 In order to accurately and timely predict the state of urban road traffic,help management sectors to implement traffic management measures to prevent traffic congestion.In this paper,the traffic state of online map are obtained in real time,and they are divided into section granularity.Then,the traffic state of upstream and downstream sections and the traffic state of opposite lanes are used as the characteristic matrix to input the LSTM network model,and the traffic state of section working days is predicted.The results are compared with the results of single section traffic state as the feature matrix input and other model results.The experimental results show that the average MAE,RMSE and accuracy of the LSTM model are 3.797,6.263 and82.15%,respectively,which proves that the LSTM model can better predict traffic state of the road section,and the prediction accuracy can be improved by considering the traffic state of the upstream and downstream lanes of the road section compared with the traffic state of the road section.
作者 胡钦 王庆国 HU Qin;WANG Qingguo(School of Automotive and Traffic Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《物流科技》 2023年第7期62-66,106,共6页 Logistics Sci-Tech
基金 国家自然科学基金项目(41571396)。
关键词 交通状态预测 深度学习 LSTM模型 数据挖掘 城市道路 traffic status prediction deep learning LSTM model data mining city roads
  • 相关文献

参考文献13

二级参考文献75

  • 1王进,史其信.短时交通流预测模型综述[J].ITS通讯,2005,7(1):10-13. 被引量:13
  • 2尚宁,覃明贵,王亚琴,崔中发,崔岩,朱扬勇.基于BP神经网络的路口短时交通流量预测方法[J].计算机应用与软件,2006,23(2):32-33. 被引量:31
  • 3杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884. 被引量:80
  • 4SHAO C F, ASAI K, NAKAGAWA S. Dynamic Forecasting for Traffic Flow on Urban Expressway with State Space Model [ C ]//Shanghai International Symposium on Urban Transportation, 1999:158-164. 被引量:1
  • 5SMITH B L, DEMETSKY M J. Traffic flow forecasting: comparison of modeling approaches [ J ]. Journal of Transportation Engineering, 1997, 123 ( 4 ) : 261 - 266. 被引量:1
  • 6AREM B V, KIRBY H R, VAN DER VLIST M J M, et al. Recent advances and application in the field of short-term traffic forecasting [ J ]. International Journal of Forecasting, 1997, 13( 1 ) :1 - 12. 被引量:1
  • 7CHROBOK R, KAUMANN O, WAHLE J, et al. Different methods of traffic forecast based on real data [ J ]. European Journal of Operational Research, 2004, 155(1): 558 -568. 被引量:1
  • 8WHITTAKER J, GARSIDE S, LINDVELD K. Tracking and predicting a network traffic process[ J ]. International Journal of Forecasting, 1997, 13 ( 1 ) :51 -61. 被引量:1
  • 9WILLIAMS B M. Multivariate Vehicular Traffic Flow Prediction-Evaluation of ARIMAX Modeling [ J ]. Transportation Research Record, 2001 ( 1776 ) : 194 - 200. 被引量:1
  • 10Stathopoulos A, KARLAFTIS M. Temporal and Spatial Variations of Real-Time Traffic Data in Urban Areas [ J ]. Transportation Research Record, 2001 (1768) : 135 - 140. 被引量:1

共引文献133

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部