期刊文献+

大跨索屋盖结构风振动力计算新方法研究

New method for calculating wind-induced vibration of long-span cable roof structure
下载PDF
导出
摘要 大跨索屋盖结构风振动力响应复杂,传统采用等效静力风荷载计算其风致振动响应的适用性一直是当前大跨结构研究的热点。针对下凹型(单层马鞍形索网)和上凸型(轮辐式双层索网、索穹顶、弦支穹顶)四类典型大跨索屋盖结构,以四类结构风洞试验测试数据为基础,结合最近邻点插值方法研究提出了基于节点动力风荷载(模式一)和面组分区动力风荷载(模式二)两种荷载取值计算模式及其计算流程,并与传统基于等效静力风荷载的取值计算模式(模式三)进行对比,在四种不利风向角下探究四类典型索屋盖采用三种荷载取值模式时的风致振动响应。结果表明,基于模式一与模式二计算得到的索屋盖结构风振响应均较模式三要高,采用节点风荷载的取值计算模式一能更为精确地反映屋盖结构实际承担的风荷载,有效表征屋盖结构的实际风振响应;在上下游均无临近场馆影响下,下凹型和上凸型索屋盖的平均和脉动风振位移响应云图总体分布规律较为一致,但响应大小变化规律不一,下凹型呈现中间大、周边小的逐渐递减的规律,而上凸型屋盖呈现中心区域小、中间环带大、周边再次下降的变化规律。 Wind-induced vibration(WIV) dynamic response of long-span cable roof structure is complex, the applicability of using traditional equivalent static wind load method to calculate its WIV response is a hot topic in the current long-span structure study. Here, based on wind tunnel test data of 4 types typical large-span cable roof structures including one concave type called single-layer saddle shaped cable network, and three convex types called spoke type double-layer cable network, cable dome and suspension dome, combined with the nearest neighbor point interpolation method, two load value calculation modes of mode 1 based on node dynamic wind load and mode 2 based on dynamic wind load of face group partition, and their calculation processes were proposed. Both of them were compared with the traditional load value calculation mode called mode 3 based on equivalent static wind load. WIV responses of 4 typical cable roofs using the above 3 load value modes under 4 unfavorable wind direction angles were investigated. The results showed that WIV responses of cable roof structures calculated based on mode 1 and mode 2 are higher than those calculated based on mode 3, mode 1 can more accurately reflect the actual wind load borne by roof structure and effectively represent the actual WIV response of the roof structure;under the condition of no effects of adjacent venues in both upstream and downstream, average and fluctuating WIV displacement response cloud charts of concave and convex cable roofs are relatively consistent, but change laws of response magnitudes are different, concave roof presents a gradually decreasing law of large in middle and small around, while convex roof presents a change law of small in central area, large in middle ring band, and falling again around.
作者 毛吉化 聂竹林 汪大洋 许伟 区彤 陈伟 吴福成 MAO Jihua;NIE Zhulin;WANG Dayang;XU Wei;OU Tong;CHEN Wei;WU Fucheng(School of Civil Engineering,Guangzhou University,Guangzhou 510006,China;Guangzhou Guangjian Construction Engineering Testing Center Co.,Ltd.,Guangzhou 510600,China;Guangdong Provincial Academy of Building Research Group Co.,Ltd.,Guangzhou 510500,China;Guangdong Architectural Design and Research Institute Co.,Ltd.,Guangzhou 510145,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第5期101-112,共12页 Journal of Vibration and Shock
基金 国家自然科学基金(51878191 51778162) 广东省自然科学基金(2020A1515010994)。
关键词 索屋盖 风荷载 取值模式 风振响应 风振系数 cable roof wind load load value mode wind-induced vibration(WIV)response WIV coefficient
  • 相关文献

参考文献17

二级参考文献151

共引文献391

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部