摘要
研究了一类非线性记忆项的广义Tricomi方程柯西问题解的爆破现象.运用迭代技巧和修正贝塞尔方程推出了在次临界情况下非线性记忆项对广义Tricomi方程解的非局部影响。此外,还得到了其解的全局非存在性和生命跨度上界估计。
Blow-up phenomena of solutions to the Tricomi equation with a nonlinear memory term in the subcritical case is studied.By using iterative techniques and modified Bessel equations,the nonlocal influence of the nonlinear memory term on the solution of generalized Tricomi equation in subcritical case is derived.In addition,the nonexistence of global solutions and an upper bound estimate of solutions for the lifespan are also obtained.
作者
欧阳柏平
肖胜中
OUYANG Bai-ping;XIAO Sheng-zhong(College of Data Science,Guangzhou Huashang College,Guangzhou 511300,China;Scientific Research Department,Guangdong AIB Polytechnic College,Guangzhou 510507,China)
出处
《数学的实践与认识》
2023年第1期215-222,共8页
Mathematics in Practice and Theory
基金
广东省普通高校创新团队项目(2020WCXTD008)
广州华商学院项目(2020HSDS01,2021HSKT01)
广州市哲学社会科学发展“十三五”规划课题(2019GZGJ209)。