摘要
甲烷+硫化氢(CH_(4)+H_(2)S)体系汽液平衡(VLE)数据对酸性天然气脱硫具有重要意义,直接影响天然气脱硫的工艺设计。为了比较不同超额吉布斯自由能-状态方程(GE-EoS)模型在再现甲烷-硫化氢体系相行为时的准确性,采用PR方程,从不同参考压力系下进行考虑,选择了Huron-Vidal(HV)、modified Huron-Vidal one-order(MHV1)、linear combination of Vidal and Michelson(LCVM)三种混合法则搭配Wilson、NRTL、UNIQUAC三种活度系数模型所组成9种GE-EoS模型,且将van der waals模型作为对比模型,探究了不同模型对二元混合物CH_(4)+H_(2)S的VLE数据的关联与预测上的表现,推荐PR+MHV1+UNIQUAC模型结合温度关联函数A+B×ln T来关联或预测二元混合物CH_(4)+H_(2)S在温度为273 K以下时的汽液相平衡相行为,为天然气脱硫工艺提供有效的参考。
The vapor-liquid equilibrium(VLE)data of methane+hydrogen sulfide(CH_(4)+H_(2)S)system is of great significance to the desulfurization of sour natural gas,which directly affects the process design of natural gas desulfurization.To compare the accuracy of different excess Gibbs free energy-equation of state(GE-EoS)models in reproducing the phase behavior of CH_(4)+H_(2)S system,PR equation,combined with vdW mixing rule/GE mixing rule(HV,MHV1,LCVM)and three activity coefficient models(Wilson,NRTL,UNIQUAC)were used to correlate the VLE.During the correlation,the interaction parameters depending on temperature or not in the mixing rule were considered.The correlation and prediction performance of different models on the VLE data of CH_(4)+H_(2)S system were explored.PR+MHV1+UNIQUAC model is recommended to combine the temperature correlation function A+B×ln T to correlate or predict VLE data of CH_(4)+H_(2)S system when temperature is below 273 K,which provides an effective reference for the natural gas desulfurization process.
作者
叶恭然
王琰铚
方一波
高旭
徐元元
包康丽
韩晓红
YE Gongran;WANG Yanzhi;FANG Yibo;GAO Xu;XU Yuanyuan;BAO Kangli;HAN Xiaohong(State Key Laboratory of Aerospace Cryogenic Propellant Technology,Beijing 100028,China;Zhejiang Key Laboratory of Refrigeration and Cryogenics,Institute of Refrigeration and Cryogenics,Zhejiang University,Hangzhou 310027,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2023年第3期592-599,共8页
Journal of Engineering Thermophysics
基金
国家自然科学基金(No.52076185)
航天低温推进剂技术国家重点实验室基金课题(No.SKLTSCP202008)。
关键词
天然气
汽液相平衡
混合法则
温度相关性
相互作用参数
natural gas
vapor-liquid equilibrium
mixing rules
temperature dependence
interaction parameters