期刊文献+

面向大数据分析的分布式矩阵计算系统研究进展 被引量:3

Research Progress on Distributed Matrix Computation Systems for Big Data Analysis
下载PDF
导出
摘要 在大数据治理应用中,数据分析是必不可少的一环,且具有耗时长、计算资源需求大的特点,因此,优化其执行效率至关重要.早期由于数据规模不大,数据分析师可以利用传统的矩阵计算工具执行分析算法,然而随着数据量的爆炸式增长,诸如MATLAB等传统工具已无法满足应用需求的执行效率,进而涌现出了一批面向大数据分析的分布式矩阵计算系统.从技术、系统等角度综述了分布式矩阵计算系统的研究进展.首先,从发展成熟的数据管理领域的视角出发,剖析分布式矩阵计算系统在编程接口、编译优化、执行引擎、数据存储这4个层面面临的挑战;其次,分别就这4个层面展开,探讨、总结相关技术;最后,总体分析了典型的分布式矩阵计算系统,并展望了未来研究的发展方向. As an essential part of big data governance applications, data analysis is characterized by time-consuming and large hardware requirements, making it essential to optimize its execution efficiency. Earlier, data analysts could execute analysis algorithms using traditional matrix computation tools. However, with the explosive growth of data volume, the traditional tools can no longer meet the performance requirements of applications. Hence, distributed matrix computation systems for big data analysis have emerged. This study reviews the progress of distributed matrix computation systems from technical and system perspectives. First, this study anal yzes the challenges faced by distributed matrix computation systems in four dimensions: programming interface, compilation optimization,execution engine, and data storage, from the perspective of the mature data management field. Second, this study discusses an d summarizes the technologies in each of these four dimensions. Finally, the study investigates the future research and development directions of distributed matrix computation systems.
作者 陈梓浩 徐辰 钱卫宁 周傲英 CHEN Zi-Hao;XU Chen;QIAN Wei-Ning;ZHOU Ao-Ying(School of Data Science and Engineering,East China Normal University,Shanghai 200062,China;Shanghai Engineering Research Center of Big Data Management(East China Normal University),Shanghai 200062,China;Guangxi Key Laboratory of Trusted Software(Guilin University of Electronic Technology),Guilin 541004,China)
出处 《软件学报》 EI CSCD 北大核心 2023年第3期1236-1258,共23页 Journal of Software
基金 国家自然科学基金(61902128) 广西可信软件重点实验室研究课题。
关键词 大数据分析 矩阵计算 并行计算系统 big data analysis matrix computation parallel computation system
  • 相关文献

参考文献7

二级参考文献27

  • 1魏翠柏,田金洲,贾建平.老年痴呆中医病因病机理论的认识与思考[J].中华中医药杂志,2005,20(8):496-498. 被引量:82
  • 2White T. Hadoop: The Definitive Guide. California.yahoopress. 2012: 1-15. 被引量:1
  • 3Islam S eds. An empirical distributed matrix multiplication algorithm to reduce time complexity. international association of engineers. Proc. of the International Multi Conference of Engineers and Computer Scientists 2009 Vol II.2009. HongKong. International Association of Engineers.2009. 2171-2173. 被引量:1
  • 4Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. USENIX. OSDI-2004. San Francisco, California, USA. USENIX. 2004. 137-150. 被引量:1
  • 5Xie J. Improving Performance of Hadoop Clusters. UMI Dissertation Express. 2011:6-7. 被引量:1
  • 6Dongarra J J,Bunch J R,Moler C B et al.LI NPACK Users’Guide. http://www.netlib.org/linpack/ . 1992 被引量:1
  • 7Cuvillo J D,Zhu WR,Hu Z Aet al.FAST:Afunctionally accurate si mulation toolset for the Cyclops64cellular archi-tecture[].Proceedings of the Workshop on ModelingBench-marking and Si mulation.2005 被引量:1
  • 8Vangal S,Howard J,Ruhl G et al.An80-Tile1.28TFLOPS network-on-chipin65nm CMOS[].Proceedings of the IEEE International Solid-State Circuits Conference.2007 被引量:1
  • 9Borkar S Y,Mulder H,Dubey P et al.Platform2015:Intel processor and platform evolution for the next decade. http://www.cs.helsinki.fi/u/kerola/rio/papers/borkar-2015.pdf . 2005 被引量:1
  • 10Dally WJ.Computer architectureinthe many-core era[].Pro-ceedings of the Keynote at theth International Conference on Computer Design.2006 被引量:1

共引文献85

同被引文献27

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部