期刊文献+

基于数据挖掘的土水特征曲线影响分析及预测研究 被引量:2

Impact Analysis and Prediction Research of Soil-water Characteristic Curves Based on Data Mining
原文传递
导出
摘要 影响土水特征曲线的因素很多,探讨非饱和土赋存环境中各因素的作用特征和主导因素的影响机理显得尤为重要.以已有试验曲线及大量数据为基础,采用数理统计分析和机器学习方法,以土水特征曲线的3个特征值(进气值、减湿速率、残余含水率)为切入点,分析不同影响因素对曲线特征值的敏感性程度及影响机理,并开展基于遗传神经网络的预测研究.研究结果表明:(1)根据Spearman相关系数结果,至少有8个影响因素与上述3个特征值存在不同程度的相关性;(2)结合偏相关及机器学习分析,塑性指数与干密度无论对进气值、减湿速率或是残余含水率都发挥着主导性作用,颗粒级配的影响排在第三位,且有效粒径d_(10)的作用最明显;(3)相同影响因素对不同特征值的作用程度也存在差异性,塑性指数对减湿速率、进气值和残余含水率的影响均较大;干密度对进气值的作用要略大于其对残余含水率的影响;颗粒级配对残余含水率的影响最大,对减湿速率的影响最弱;干湿循环主要对进气值和减湿速率有一定影响;(4)获得了3个特征值受干密度、塑性指数共同影响下的分布规律,并针对不同种类土给出了各特征值的参考范围;(5)基于BP神经网络优化后的GA-BP神经网络模型,对多因素共同影响下土水特征曲线特征值的预测效果良好,可有效反映土体持水性能的演变特征. Soil-water characteristic curves of unsaturated soils are affected by many factors.It is critical to reveal the active characteristic of each factor and ascertain the impact mechanism of the dominant factors for unsaturated soils in various conditions.To remedy this issue,mathematical statistical analysis and machine learning methods are employed to analysis the sensitivity of soil-water characteristic curve to each factor by investigating the variation of three characteristic values:Air-entry value,dehumidification rate and residual water content,in which the basic data is collected from the existing literatures.Then,Genetic Neural Networks(GA-BP)is introduced to predict those characteristic values of soil-water characteristic curve in consideration of the impact of multiple factors.The results show that:(1)Spearman correlation coefficient results verified that at least eight factors affect the three characteristic values in different degrees.(2)By partial correlation analysis and machine learning,the plasticity index and the dry density collectively dominate the variation of the three characteristic values,and the third factor is the grain composition.In the grain composition,the effect of the effective particle size d_(10)is most significant.(3)Sensitivities of different characteristic values to a factor are different.The plasticity index influences all three characteristic values of soil-water characteristic curve to a similar degree.The effect of dry density on air-entry value was slightly greater than its effect on residual water content.The effect of grain composition focuses on residual water content,while it is slight on the dehumidification rate.The effect of drying-wetting cycles mainly reflects in the air-entry value and the dehumidification rate.(4)Distributions of the three characteristic values under the effects of dry density and plasticity index are achieved,and also the reference ranges of three characteristic values are suggested for different soils.(5)The GA-BP neural network is valid in the p
作者 陈勇 邹皓天 苏剑 叶润青 王力 CHEN Yong;ZOU Haotian;SU Jian;YE Runqing;WANG Li(Key Laboratory of Geological Hazards on Three Gorges Reservoir Area,China Three Gorges University,Yichang Hubei 443002;College of Civil Engineering&Architecture,China Three Gorges University,Yichang Hubei 443002)
出处 《应用基础与工程科学学报》 EI CSCD 北大核心 2023年第2期451-466,共16页 Journal of Basic Science and Engineering
基金 国家自然科学基金区域发展联合基金重点项目(U21A2031)。
关键词 土水特征曲线 特征值 塑性指数 干密度 敏感性分析 机器学习 数据挖掘 soil-water characteristic curve characteristic values plasticity index dry density sensitivity analysis machine learning data mining
  • 相关文献

参考文献35

二级参考文献320

共引文献482

同被引文献32

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部