摘要
为解决可再生能源和用户负荷波动所造成的能量供需不平衡问题,该文提出多时间尺度优化运行方法。该方法建立“日前-日内滚动-实时调整”的三阶段优化模型来逐级优化机组出力,日前阶段考虑环境成本,日前优化以日运行成本最低为目标,日内滚动优化以滚动控制时域内购能成本和机组出力变化惩罚成本最低为目标,实时调整优化以设备功率总调整率最小为目标,最终得到设备的实时平滑出力计划。日前阶段比较不同的系统结构对CCHP系统日运行成本的影响,并确定了最佳的系统结构。仿真结果验证了所提策略的准确性,优化结果显示:多元储能模式能降低CCHP系统的运行成本;多时间尺度滚动优化不但能提高CCHP系统的运行经济性,而且能减小设备的功率波动,减小设备运行损耗。
In order to solve the energy supply and demand imbalance caused by the fluctuation of renewable energy and user load,this paper proposes a multi-time-scale optimization operation method. This method establishes a three-stage optimization model of "dayahead,day-in rolling,real-time adjustment" so as to optimize unit output step by step. Environmental cost is considered in the dayahead phase,day-ahead optimization aims at the lowest daily operating cost,and day-in rolling optimization uses rolling control time domain purchases,which goal is to minimize the cost of energy and the penalty cost of unit output changes,and the real-time adjustment optimization aims to minimize the total adjustment rate of equipment power,and finally obtaining a real-time smooth output plan of the equipment. In the day-ahead stage,the effects of different system structures on the daily operating cost of combined cooling,heating and power(CCHP)system are compared,and the best system structure is determined. The simulation results verify the accuracy of the proposed strategy,and the optimization results show that:multi-energy storage mode can reduce the operating cost of CCHP system;multi-time-scale rolling optimization can not only improve the operation economy of CCHP system,but also reduce the power fluctuation and the operation loss of equipment.
作者
王智
陶鸿俊
蔡文奎
张玲
孟金祥
Wang Zhi;Tao Hongjun;Cai Wenkui;Zhang Ling;Meng Jinxiang(College of Energy,Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2023年第2期298-308,共11页
Acta Energiae Solaris Sinica
基金
国家重点研发计划(2019YFE0193100)。
关键词
冷热电联供系统
储能
反馈
多时间尺度优化
波动率
不确定性
combined cooling
heating and power system
energy storage
feedback
multi-time-scale optimization
volatility
uncertainty