期刊文献+

一种新型复合滑模趋近律设计与分析 被引量:11

Design and analysis of a new compound sliding mode reaching law
原文传递
导出
摘要 针对传统幂次趋近律存在的抖振以及全局收敛缓慢的问题,提出一种新型复合滑模趋近律,该趋近律通过引入正切函数以及对传统幂次趋近律的改进,实现趋近律的快速收敛和无抖振特性.首先,引入正切函数,在初始状态已知的情况下使系统更快地收敛;其次,通过设计的趋近律改进传统幂次趋近律中含符号函数乘积项容易引起的抖振;然后,理论证明新型复合趋近律能够快速收敛且无抖振,并推导出趋近速率及稳态误差界;最后,以直线磁悬浮同步电动机磁悬浮系统为例,与双幂次趋近律和多幂次趋近律仿真对比,进一步验证新型复合趋近律能够明显缩短系统的动态过程并消除抖振,且存在模型不确定性及外加干扰作用下,系统仍能迅速地收敛到平衡点附近的领域内. In order to solve the problem of chattering and slow global convergence of the traditional power law, a new compound sliding mode law is proposed, which introduces a tangent function and improves the traditional power law,thus the fast convergence and chattering-free characteristics of the reaching law are realized. Firstly, a tangent function is introduced, which can make the system converge faster when the initial state is known, the reaching law is designed to improve the chattering caused by the product term of the symbolic function in the traditional power reaching law. Then,the convergence rate and steady-state error bounds of the new compound reaching law are derived. Finally, taking the magnetic levitation system of a linear magnetic levitation synchronous motor as an example, the simulation results show that the new compound reaching law can obviously shorten the dynamic process of the system and eliminate chattering,and in the presence of model uncertainty and external disturbance, the system can converge rapidly to the region near the equilibrium point.
作者 雷城 蓝益鹏 徐泽来 孙云鹏 石晓磊 LEI Cheng;LAN Yi-peng;XU Ze-lai;SUN Yun-peng;SHI Xiao-lei(School of Electrical Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处 《控制与决策》 EI CSCD 北大核心 2023年第2期435-440,共6页 Control and Decision
基金 国家自然科学基金项目(51575363)。
关键词 正切函数 新型复合趋近律 滑模控制 稳态误差界 直线磁悬浮同步电动机 变幂次趋近律 tangent function new compound reaching law sliding mode control steady-state error boundary linear magnetic levitation synchronous motor variable power reaching law
  • 相关文献

参考文献10

二级参考文献71

共引文献761

同被引文献100

引证文献11

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部