期刊文献+

语义分割评价指标和评价方法综述 被引量:18

Survey of Evaluation Metrics and Methods for Semantic Segmentation
下载PDF
导出
摘要 深度学习算法在语义分割领域已经取得大量突破,对这些算法的性能评估应选择标准、通用、全面的度量指标,以保证评价的客观性和有效性。通过对当前语义分割评价指标和度量方法进行归纳分析,从像素标记准确性、深度估计误差度量、执行效率、内存占用、鲁棒性等方面进行了多角度阐述,尤其对广泛应用的F1分数、mIoU、mPA、Dice系数、Hausdorff距离等准确性指标进行了详细介绍,并总结了提高分割网络鲁棒性的方法,指出了语义分割实验的要求和当前分割质量评价存在的问题。 Deep learning has made major breakthroughs in the field of semantic segmentation.Standard,well-known and comprehensive metrics should be used to evaluate the performance of these algorithms to ensure objectivity and effective-ness of the evaluation.Through summary of the existing semantic segmentation evaluation metrics,this paper elaborates from some aspects,e.g.,pixel accuracy,depth estimation error metric,operation efficiency,memory demand and robust-ness.Especially,the widely used accuracy metrics such as F1 score,mIoU,mPA,Dice coefficient and Hausdorff distance are introduced in detail.In addition,this paper expounds the related research on the robustness and generalization.Further-more,this paper points out the requirements in the semantic segmentation experiment and the limitations of segmentation quality evaluation.
作者 于营 王春平 付强 寇人可 吴巍屹 刘天勇 YU Ying;WANG Chunping;FU Qiang;KOU Renke;WU Weiyi;LIU Tianyong(Department of Electronic and Optical Engineering,Shijiazhuang Campus,Army Engineering University of PLA,Shijiazhuang 050005,China;School of Information and Intelligent Engineering,University of Sanya,Sanya,Hainan 572022,China;Department of Equipment Command and Management,Shijiazhuang Campus,Army Engineering University of PLA,Shijiazhuang 050005,China;School of Earth Sciences,Northeast Petroleum University,Daqing,Heilongjiang 163319,China)
出处 《计算机工程与应用》 CSCD 北大核心 2023年第6期57-69,共13页 Computer Engineering and Applications
基金 海南省自然科学基金(621QN270)。
关键词 语义分割 评价指标 平均交并比(mIoU) 平均像素精度(mPA) 鲁棒性 semantic segmentation evaluation metric mean intersection over union(mIoU) mean pixel accuracy(mPA) robustness
  • 相关文献

参考文献4

二级参考文献9

共引文献74

同被引文献149

引证文献18

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部