期刊文献+

由课堂教学改革到改进教与学优化算法

The Reformations of Classroom Teaching and the Improved Teaching-Learning-Based Optimization Al⁃gorithms
下载PDF
导出
摘要 教与学优化算法是一种模拟课堂教学与学习过程的新型启发式群体智能优化算法,因其参数少、易实现、收敛快等优点,近年来被广泛应用于众多科学和工程优化领域。参考现实中的课堂教学改革措施,将教师的自增强学习机制、学生的自主学习/分组学习策略、师生间的反馈交流、多教师并行教学的综合培养等改进策略融入教与学优化算法,使得改进教与学优化算法在复杂优化问题中获得更好的表现。此外,讨论了课程思政、课程考核、教学资源等引入教与学优化算法的可能性及其未来的发展方向。 Teaching-learning-based optimization(TLBO)algorithm is a novel heuristic swarm intelligence opti⁃mization algorithm that simulates the classroom teaching and learning process.Because of its advantages of few parameters,easy implementation and rapid convergence,it has been widely used in many scientific and engineer⁃ing optimization fields.Referring to the real classroom teaching reformations,the improved strategies such as teachers’ability improvement,students’self-learning and group learning,teacher-student feedback and multi�teacher comprehensive training are integrated into TLBO algorithm,so that a series of improved TLBO algorithms can achieve better performance in complex optimization problems.In addition,the future development of TLBO is also discussed,such as the construction of ideological and political education in specialized courses,curriculum assessment reformation,introduction of diversified teaching resources.
作者 宋述芳 张伟伟 王致 SONG Shufang;ZHANG Weiwei;WANG Zhi
出处 《科教文汇》 2023年第5期1-4,共4页 Journal of Science and Education
关键词 课堂教学 教与学优化算法 智能优化算法 classroom teaching and learning process teaching-learning-based optimization algorithm intelli⁃gent optimization algorithm
  • 相关文献

参考文献8

二级参考文献54

  • 1潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 2金欣磊,马龙华,吴铁军,钱积新.基于随机过程的PSO收敛性分析[J].自动化学报,2007,33(12):1263-1268. 被引量:38
  • 3ZHONG Jinghua. PID controller tuning: a short tutorial[OL/EB].[2013-01-22]. http://saba.kntu.ac.ir/eecd/pcl/download/PIDtutorial.pdf. 被引量:1
  • 4ANG K H, CHONG G C Y, LI Y. PID control system analysis, design, and technology[J]. IEEE Trans Control Systems Tech, 2005, 13(4): 559-576. 被引量:1
  • 5DEY C. An improved auto-tuning scheme for PID controllers[J]. ISA Trans, 2011, 48(4): 396-409. 被引量:1
  • 6MIZUMOTO I, IKEDA D, HIRAHATA T, et al. Design of discrete time adaptive PID control systems with parallel feedforward compensator[J]. Control Eng Practice, 2010, 18(2): 168-176. 被引量:1
  • 7AHN K K, TRUONG D Q. Online tuning fuzzy PID controller using robust extended Kalman filter[J]. J Process Control, 2009, 19(6): 1011-1023. 被引量:1
  • 8TRUONG D Q, AHN K K. Force control for press machines using an online smart tuning fuzzy PID based on a robust extended Kalman filter[J]. Exp Syst Appl, 2011, 38(5): 5879-5894. 被引量:1
  • 9JAHEDI G, ARDEHALI M M. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of adynamic energy system[J]. Energy Convers Manage, 2011, 52(1): 725-732. 被引量:1
  • 10CHIOU J S, LIU M T. Numerical simulation for fuzzy-PID controllers and helping EP reproduction with PSO hybrid algorithm[J]. Simulat Modell Practice Theory, 2009, 17(10): 1555-1565. 被引量:1

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部