期刊文献+

基于轻量神经网络的中草药识别研究 被引量:1

Research on Chinese Herbal Medicine Recognition Based on Lightweight Neural Network
下载PDF
导出
摘要 随着中医药学在国际医疗地位中的不断提高,中草药的使用广泛度也在增加。智能化的中草药图像识别可以进一步推进中医药学的现代化和国际化。传统卷积神经网络的参数量过多,需要大量计算资源,提出一种轻量型卷积神经网络中草药分类算法。新算法使用可分离卷积方式对原始图像与其梯度图的组合进行特征提取,在降低参数量的情况下提高分类的精度。 As Chinese medicine gains a greater importance in global medical treatment,Chinese herbal medicine has been widely used.Therefore,an intelligent image recognition system of Chinese herbal medicine can further facilitate the modernization and internationalization of Chinese medicine.Due to the numerous parameters and computing resources in the traditional convolutional neural network,a lightweight neural network of Chinese herbal medicine classification algorithm is given.The new algorithm is enabled to extract features from the combination of the original image and gradient map,which helps promote the accuracy of classification.
作者 齐保峰 刘华明 王先传 毕学慧 QI Baofeng;LIU Huaming;WANG Xianchuan;BI Xuehui(College of Computer and Information Engineering,Fuyang Normal University,Fuyang 236037,China)
出处 《洛阳理工学院学报(自然科学版)》 2023年第1期73-78,共6页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金 安徽省高校自然科学基金项目(KJ2020ZD46) 阜阳师范大学校级项目(2021FSKJ01ZD) 安徽省社科规划青年项目(AHSKQ2021D47) 阜阳师范大学市校合作科技专项项目(SXHZ202103) 阜阳师范大学校级项目(2020KYQD0032) 阜阳师范大学校级项目(2020FSKJ08ZD).
关键词 神经网络 卷积核 特征组合 通道卷积 neural network convolution kernel feature combination channel convolution
  • 相关文献

参考文献4

二级参考文献36

  • 1刘敏.李海涛,颐海燕.等.WorldView2高分辨率卫星影像面向时象分类[C]//笫十八届中国遥感大会.2012:123-129. 被引量:1
  • 2KR1ZHEVSKY A, SUTSKEVER I, HINTON G E. hnagenet classification with decd convolutional neura nelworks[C]//Advances in Neural Infornmtion Pro cessing Syslems. Red Hook. NY: Curran Associates. 2012:1097-1105. 被引量:1
  • 3DAHI. G E,YU D.DENG L,et al. Contexl-dependent pre-lrained deep neural networks for large-wmabulary speech rccognition[J]. Audio. Speech. and l.anguage Processing. IEEE Transactions on, 2012.20( 1 ) :30- 12. 被引量:1
  • 4ER H A N D. COURVII.I.E A. BENGIC Y. Understand ing representations learned in deep architectures,TR1355[R/OL. (2010-10-19)[2016-06-11]. http://www. dumitru, ca/files/publicalions/invarianes_techre- porl. pdf. 被引量:1
  • 5HINTON G E.SALAKHUTI)INOV R. Reducing thedimensionality of data with neural networks [J]. Sci- ence, 2006,313(5786) :504-507. 被引量:1
  • 6SOOMRO K,ZAM1R A R,SHAN M. Ucfl01a data- set of 101 human actions classes from videos in the wild[J].CoRR, 2012 : abs/1212. 0402. 被引量:1
  • 7DANL G E, SAINATH T N, HINTON G E. Improving deep neural networks for LVCSR Using rectified linear u- nits and dropout[C]//Acoustics, Speech and Signal Pro- cessing (ICASSP), 2013 IEEE International Conference on. Piscataway, NJ : IEEE, 2013 : 8609-8613. 被引量:1
  • 8LE Q V, RAMZATO M, MONGA R, et al. Building high-level features using large scale unsupervised learning,Ill2. 6209[R]. New York, USA: Cornell U- niversity, 2012. 被引量:1
  • 9HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Com- putation,2006,18(7) :1527-1554. 被引量:1
  • 10GLOROT X, BORDES A, BENGTO Y. Deep sparse ) rectifier networks[C]. JMLR Workshoop and Confer- ence Proceedings : AISTATS 2011. Brookline, MA: Microtome Publishing, 2011 : 315-323. 被引量:1

共引文献2015

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部