摘要
为了降低智能防溜铁鞋状态研判误差,提升防溜铁鞋的安全性,设计了基于扭矩前馈的多信道智能防溜铁鞋状态研判系统。硬件方面,对无线传感器和网关进行了设计;软件方面,通过建立数据传输平台,实现了多信道智能防溜铁鞋数据传输控制。建立的通信数据抗干扰机制,去除了多信道数据传输中的噪声数据。依托后向传播神经网络(BPNN)预测模型,设计扭矩前馈跟踪算法,并对扭矩的瞬态信息进行了更新。基于量子遗传算法构建状态研判模型,结合多信道数据和扭矩前馈数据,完成了智能防溜铁鞋状态研判。系统测试结果表明:该系统的状态研判误差为6.67%,满足实际工作要求。
In order to reduce the error of intelligent anti-slip iron shoes status research and judgment and improve the safety of anti-slip iron shoes, a multi-channel intelligent anti-slip iron shoes status research and judgment system based on torque feedforward is designed. In terms of hardware, wireless sensor and gateway are designed;In terms of software, a data transmission platform is established to realize multi-channel intelligent anti-slip shoe data transmission control. The anti-interference mechanism of communication data is established to remove noise data in multi-channel data transmission. Based on the back propagation neural network(BPNN) prediction model, the torque feedforward tracking algorithm is designed and the torque transient information is updated. Using the quantum genetic algorithm, it realizes the state research and judgment model, and completes the state research and judgment of intelligent anti-slip iron shoes with the multi-channel data and torque feedforward data. The system test results show that the error of the system is 6.67%, which meets the actual work requirements.
作者
宋俊福
徐炳辉
张岩
Song Junfu;Xu Binghui;Zhang Yan(Guoneng Shuohuang Railway Development Co.,Ltd.,Shanxi Yuanping,034100,China)
出处
《机械设计与制造工程》
2023年第2期122-126,共5页
Machine Design and Manufacturing Engineering
关键词
扭矩前馈
多信道
智能防溜铁鞋
状态研判
扭矩跟踪
BPNN模型
torque feedforward
multichannel
intelligent anti slip iron shoes
state research and judgment
torque tracking
BPNN model