期刊文献+

Large-scale photonic natural language processing

原文传递
导出
摘要 Modern machine-learning applications require huge artificial networks demanding computational power and memory.Light-based platforms promise ultrafast and energy-efficient hardware,which may help realize nextgeneration data processing devices.However,current photonic networks are limited by the number of inputoutput nodes that can be processed in a single shot.This restricted network capacity prevents their application to relevant large-scale problems such as natural language processing.Here,we realize a photonic processor for supervised learning with a capacity exceeding 1.5×10^(10)optical nodes,more than one order of magnitude larger than any previous implementation,which enables photonic large-scale text encoding and classification.By exploiting the full three-dimensional structure of the optical field propagating in free space,we overcome the interpolation threshold and reach the over-parameterized region of machine learning,a condition that allows high-performance sentiment analysis with a minimal fraction of training points.Our results provide a novel solution to scale up light-driven computing and open the route to photonic natural language processing.
出处 《Photonics Research》 SCIE EI CAS CSCD 2022年第12期2846-2853,共8页 光子学研究(英文版)
基金 Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Ministero dell’Universitàe della Ricerca(PRIN No.20177PSCKT)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部