期刊文献+

带收缩的MINRES种子投影方法

The MINRES Seed Projection Methods with Deflation
下载PDF
导出
摘要 研究实对称线性方程组AX=B的数值解法。种子投影方法是求解线性方程组的一种常见方法,但是当系数矩阵为对称矩阵时,种子投影方法的有效性往往会降低。考虑把收缩技术和种子投影方法相结合,提出求解实对称线性方程组的收缩MINRES种子投影方法,并分析算法的残量。数值实验结果表明新方法是有效的。 In this paper,the numerical solution of real symmetric linear system is studied.The seed projection method is a common method,but when the coefficient matrix is a symmetric matrix,the effectiveness of the seed projection method is often reduced.The MINRES seed projection method with deflation for solving real symmetric linear system is proposed,and the residual estimation of the algorithm is analyzed.Results of numerical experiments show the effectiveness of the new method.
作者 朱景福 李欣 林靖杰 ZHU Jingfu;LI Xin;LIN Jingjie(College of Science,Guangdong University of Petrochemical Technology,Maoming 525000,China)
出处 《广东石油化工学院学报》 2023年第1期76-79,84,共5页 Journal of Guangdong University of Petrochemical Technology
基金 广东石油化工学院人才引进启动项目(2018rc44,2018rc45)。
关键词 实对称线性方程组 收缩技术 MINRES种子投影方法 KRYLOV子空间 real symmetric linear systems MINRES seed projection method deflated technique Krylov Subspace
  • 相关文献

参考文献5

二级参考文献51

  • 1李欣.求解非对称线性方程组的总体拟极小向后扰动方法[J].南京大学学报(自然科学版),2005,41(4):350-355. 被引量:2
  • 2李欣 ,戴华 .解对称线性方程组的总体最小扰动方法[J].南京大学学报(数学半年刊),2005,22(2):315-322. 被引量:4
  • 3SAAD Y. Krylov subspace method for solving large unsymmetric linear systems[J]. Math Comp, 1981, 37: 105 - 126. 被引量:1
  • 4SAAD Y. The Lanczos biorthogonalization algorithm and other oblique projection method for solving Large unsymmetric systems [ J]. SIAM J Numer Anal, 1982, 19 (3) :485 -506. 被引量:1
  • 5FREUND R W, NACHTIGAL N M. QMR: A quasiminimal residual method for non-hermitian linear systems[J]. Numer Math, 1991, 60:315 -337. 被引量:1
  • 6SAAD Y,SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solving unsymmetrie linear systems[J]. SIAM J Sci Statist Comput, 1986, 7(3) : 856 - 869. 被引量:1
  • 7KASENALLY E M. GMBACK: A generalized minimum backward error algorithm for nonsymmetric linear systems [J]. SIAM J Sci Comput, 1995, 16(3) :698-719. 被引量:1
  • 8MORGAN R B. A restarted GMRES methods augmented with eigenvectors[ J ]. SIAM J Matrix Anal Appl, 1995, 16(4) :1154 -1171. 被引量:1
  • 9CHAPMA, N A,SAAD Y. Deflated and augmented Krylov subspace techniques[J]. Numer Linear Algebra Appl, 1997 ,4( 1 ) :43 - 66. 被引量:1
  • 10SAAD Y, YEUNG M,ERHEL J, et al. A deflated version of the conjugate gradient algorithm[ J]. SIAM J Sci Comput, 2000, 21 (5) : 1909 - 1926. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部