摘要
风涌浪分离是研究风浪、涌浪各自特性的基础,但受限于海浪谱数据的匮乏,基于海浪谱的风涌浪分离方法难以普及应用,有效的解决办法是采用波浪观测中容易获取的基本波要素进行风涌浪分离。现有方法无法利用基本波要素全面计算出风浪、涌浪的比例及其特征参数,为此本文将机器学习引入到风涌浪分离中,以多层感知器模型为基础,提出了一种利用基本波要素、风要素准确计算出风涌浪参数的方法。该方法需要每个测站提供至少466笔、建议766笔及以上的实测波浪数据作为训练样本,适用于台湾海峡3个测站,在计算精度上显著优于基于海浪频谱的传统风涌浪分离方法,可为本海域缺乏海浪谱的测站提供替代性的风涌浪计算方案,有助于扩大实测风涌浪资料的来源,进而加强风涌浪分布特性以及预警预报研究。
Separation of wind-wave and swell is the basis for studying the respective characteristics of wind-wave and swell.However,due to the lack of wave spectrum data,it is difficult to popularize and apply separation methods based on wave spectrums.An effective solution is to use wave observations that are easy to obtain,namely basic wave elements to separate wind-wave and swell.Existing methods cannot use basic wave elements to comprehensively calculate the proportions and characteristic parameters of wind-wave and swell.For this reason,this paper introduces machine learning into the separation of wind-wave and swell.Based on the multi-layer perceptron model,a method using wave elements and wind elements to accurately estimate wind-wave and swell parameters is proposed.This method requires each station to provide at least 466 training samples of wave data and 766 or more training samples are recommended.The method is suitable for 3 stations in the Taiwan Strait with its accuracy significantly better than traditional methods based on wave spectrums.The proposed method can provide alternative calculation schemes of wind-wave and swell for stations lacking wave spectrums in this sea area.It helps expand the source of measured data of wind-wave and swell,therefore strengthening the research on the characteristics and early warning and forecasting of wind-wave and swell.
作者
徐啸
陶爱峰
韩雪
潘锡山
杨伊妮
Xu Xiao;Tao Aifeng;Han Xue;Pan Xishan;Yang Yini(Key Laboratory of Ministry of Education for Coastal Disaster and Protection,Hohai University,Nanjing 210024,China;College of Harbor,Coastal and Offshore Engineering,Hohai University,Nanjing 210024,China;Tidal Flat Research Center of Jiangsu Province,Nanjing 210036,China;Port and Waterway Development Center,Department of Transportation of Jiangsu Province,Nanjing 210004,China)
出处
《海洋学报》
CAS
CSCD
北大核心
2023年第2期1-12,共12页
基金
国家重点研发计划(2022YFE0104500)
国家自然科学基金(52271271)
水利部重大科技项目(SKS-2022025)。
关键词
风涌浪分离
台湾海峡
机器学习
涌浪
风浪
separation of wind-wave and swell
Taiwan Strait
machine learning
swell
wind-wave