期刊文献+

Reinforced virtual optical network embedding algorithm in EONs for edge computing

原文传递
导出
摘要 As the core technology of optical networks virtualization, virtual optical network embedding(VONE) enables multiple virtual network requests to share substrate elastic optical network(EON) resources simultaneously and hence has been applicated in edge computing scenarios. In this paper, we propose a reinforced virtual optical network embedding(R-VONE) algorithm based on deep reinforcement learning(DRL) to optimize network embedding policies automatically. The network resource attributes are extracted as the environment state for model training, based on which DRL agent can deduce the node embedding probability. Experimental results indicate that R-VONE presents a significant advantage with lower blocking probability and higher resource utilization.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第6期18-29,共12页 中国邮电高校学报(英文版)
基金 supported in part by the National Natural Science Foundation of China(62001422) Henan Scientific and Technology Innovation Talents(22HASTIT016).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部