摘要
Quantitative and analytical analysis of the modulation process of the collimator is a great challenge,and is also of great value to the design and development of Fourier transform imaging telescopes.The Hard X-ray Imager(HXI),as one of the three payloads onboard the Advanced Space-based Solar Observatory(ASO-S) mission,adopts modulating Fourier-Transformation imaging technique and will be used to explore the mechanism of energy release and transmission in solar flare activities.As an important step to reconstruct the images of solar flares,accurate modulation functions of HXI are needed.In this paper,a mathematical model is developed to analyze the modulation function under a simplified condition first.Then its behavior under six degrees of freedom is calculated after adding the rotation matrix and translation change to the model.In addition,unparalleled light and extended sources are also considered so that our model can be used to analyze the X-ray beam experiment.Next,applied to the practical HXI conditions,the model has been confirmed not only by Geant4 simulations but also by some verification experiments.Furthermore,how this model helps to improve the image reconstruction process after the launch of ASO-S is also presented.
基金
supported by the Strategic Priority Research Program on Space Science
Chinese Academy of Sciences(No.XDA 15320104)
the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20200077)
the National Natural Science Foundation of China(Nos.12173100,12022302,11803093 and 11973097)
the Youth Innovation Promotion Association,CAS(No.2021317 and Y2021087)。