期刊文献+

一类具P-Laplacian算子的半正分数阶微分方程脉冲边值问题正解的存在性与唯一性

The existence and uniqueness of positive solutions for semipositone fractional impulsive differential equations boundary value problems with P-Laplacian operator
下载PDF
导出
摘要 讨论了一类具P-Laplacian算子的半正分数阶微分方程脉冲边值问题正解的存在性,利用上下解方法研究了其正解的唯一性. The existence of positive solutions for semipositone fractional impulsive differential equations boundary value problems with P-Laplacian operator is discussed.By using upper and lower solution method,the uniqueness of positive solutions is given,and it is verified by an example.
作者 盛世昌 张婷婷 胡卫敏 SHENG Shi-chang;ZHANG Ting-ting;HU wei-min(School of Mathematics and Statistics,Yili Normal University,Yining 835000,China;Institute of Applied Mathematics,Yili Normal University,Yining 835000,China)
出处 《东北师大学报(自然科学版)》 CAS 北大核心 2023年第1期15-23,共9页 Journal of Northeast Normal University(Natural Science Edition)
基金 新疆维吾尔自治区自然科学基金资助项目(2019D01C331) 伊犁州科技计划项目(YZ2022Y013) 伊犁师范大学科研创新团队项目(XZK2021016).
关键词 脉冲 半正 P-LAPLACIAN算子 分数阶微分方程 边值问题 impulsive semipositone P-Laplacian operator fractional differential equations boundary value problems
  • 相关文献

参考文献2

二级参考文献28

  • 1Kilbas A A, et al. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier Science, 2006. 被引量:1
  • 2Miller K S, et al. An Introduction to the Fractional Calculus and Differential Equations[M]. New York: John Wiley & Sons, 1993. 被引量:1
  • 3Oldham K B, et al. The Fractional Calculus[M]. London: Academic Press, 1974. 被引量:1
  • 4Podlubny I. Fractional Differential Equation[M]. San Diego: Academic Press, 1999. 被引量:1
  • 5Samko S G, et al. Fractional Integrals and Derivatives, Theory and Applications[M]. Yverdon: Gordon and Breach, 1993. 被引量:1
  • 6Lakshmikantham V, et al. Basic theory of fractional differential equations[J]. Nonlinear Analysis: Theory Methods & Applications, 2008, 69(8): 2677-2682. 被引量:1
  • 7Lakshmikantham V, et al. General uniqueness and monotone iterative technique for fi'actional differential equations[J]. Applied Mathematics Letters, 2008, 21(8): 828-834. 被引量:1
  • 8Lakshmikantham V. Theory of fractional functional differential equations[J]. Nonlinear Analysis: Theory Methods & Applications, 2008, 69(10): 3337-3343. 被引量:1
  • 9Babakhani A, et al. Existence of positive solutions of nonlinear fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2003, 278(2): 434-442. 被引量:1
  • 10Babakhani A, et al. Existence of positive solutions for N-term non-autonomous fractional differential equa- tions[J]. Positivity, 2005, 9(2): 193-206. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部