期刊文献+

基于Sobel算子的池化算法设计

Design of Pooling Algorithm Based on Sobel Operator
下载PDF
导出
摘要 池化算法是卷积神经网络中用于特征降维、参数压缩、扩大感受野的重要一层。针对现有的池化方法没有充分考虑到池化前特征图的整体内容及风格特征分布问题,提出了一种通过Sobel算子对卷积后的特征图计算每个特征点的梯度值,并根据梯度值分布确定每个池化窗口取最大值、均值或者最小值的池化算法。该算法充分考虑了特征图池化前后的整体内容及风格特征分布,保持了特征图的整体不变性。实验表明,该池化算法在VGG、ResNet等经典网络架构上取得了优异性能,具有普适性,可用来替代常用的最大池化、平均池化。 The pooling algorithm is an important layer in the convolutional neural network for feature dimension reduction,parameter compression,and expansion of the receptive field.Aiming at the problem that the existing pooling methods do not fully consider the overall content and style feature distribution of the feature map before pooling.A method was proposed to calculate the gradient value of each feature point on the convolved feature map by the Sobel operator,and according to the gradient value distribution,the pooling algorithm for each pooling window was determined to take the maximum value,the average value or the minimum value.The algorithm fully considers the overall content and style feature distribution before and after the feature map pooling,and maintains the overall invariance of the feature map.Experiments show that the pooling algorithm achieves excellent performance on classic network architectures such as VGG and ResNet,and is universal,can be used to replace the commonly used max pooling and average pooling.
作者 冯松松 王斌君 FENG Song-song;WANG Bin-jun(School of Information Network Security,People􀆳s Public Security University of China,Beijing 100038,China)
出处 《科学技术与工程》 北大核心 2023年第3期1145-1151,共7页 Science Technology and Engineering
基金 国家社会科学基金(20AZD114) 公安部科技强警基础工作专项(2018GABJC03)。
关键词 卷积神经网络 最大池化 平均池化 最小池化 SOBEL算子 convolutional neural network max pooling average pooling min pooling Sobel operator
  • 相关文献

参考文献2

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部