期刊文献+

基于深度学习的容器化Flink上下游负载均衡策略研究 被引量:1

Research on Load Balancing Strategy of Containerized Flink Upstream and Downstream Processing Based on Deep Learning
下载PDF
导出
摘要 容器化部署Flink时,存在上下游算子的容器内存分配不均衡问题。提出基于深度学习的容器化Flink上下游负载均衡框架,使用CEEMDAN分解方法和BiLSTM相结合的预测方法预测Flink下游容器所需内存,并依据预测结果调整容器内存分配。实验证明:提出的上下游负载均衡策略可有效减少上游容器的等待时间,缓解下游容器的资源,计算效率提高约20%。 When deploying Flink in container environment,the container resources of upstream and downstream tasks can hardly be allocated balancedly.A containerized Flink upstream and downstream load balancing framework based on deep learning is proposed.The prediction method combining CEEMDAN decomposition method and BiLSTM is used to predict the memory required by Flink downstream containers.The container memory allocation is adjusted according to the prediction results.Experiments show that the proposed upstream and downstream load balancing strategy can effectively reduce the waiting time of upstream containers,alleviate the resources of downstream containers,and improve the computing efficiency by about 20%.
作者 艾力卡木·再比布拉 甄妞 黄山 段晓东 Alkam Zabibul;ZHEN Niu;HUANG Shan;DUAN Xiao-dong(School of Computer Science and Engineering,Dlian Minzu University,Dlian Liaoning 116650,China;Key Laboratory of Big Data Applied Technology of State of Ethnic Affairs Commission,Dlian Minzu University,Dlian Liaoning 116650,China;Dalian Key Laboratory of Digital Technology for National Culture,Dlian Minzu University,Dlian Liaoning 116650,China)
出处 《大连民族大学学报》 2023年第1期47-52,共6页 Journal of Dalian Minzu University
基金 国家重点研发计划云计算和大数据重点专项项目(2018YFB1004402)。
关键词 Flink 容器负载预测 容器伸缩 深度学习 Flink container load prediction container scaling deep learning
  • 相关文献

参考文献6

二级参考文献28

共引文献40

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部