摘要
为了提高三管潜热储能系统的凝固性能,本文将旋转机制应用到其凝固过程中并开展了相应的数值模拟研究。通过实验数据对数值模型的准确性进行了验证,深入探究了旋转对放热过程液相分布、温度分布和流速分布的影响;对比分析了无旋转状态和不同转速下,三管潜热储能系统凝固放热过程的液相演化、热能释放总量及热能释放速率。研究结果表明:旋转机制的加入能有效地降低相变材料凝固时间且增大热能释放速率,但在单个凝固周期内总热能释放量略有降低;相比于静置状态,0.50 r/min转速下相变材料凝固时间缩短了78.10%,该转速下的热量释放速率是静止状态的4.45倍,但总热能释放量降低了2.52%。本文研究结果为旋转机制在三管潜热储能系统中的设计和应用提供了参考。
To improve the solidification performance of triplex-tube thermal energy storage system,the rotation mechanism is applied to the solidification process and a corresponding numerical simulation is carried out in this paper.The accuracy of numerical models is verified by comparing with experimental data and the influences of rotation on the liquid phase distribution,temperature distribution,and flow velocity field in the exothermic process are explored.The liquid phase evolution,total amount of heat energy release,and heat energy release rate of the triplex-tube thermal energy storage system without rotation and at different rotational speeds are compared and analyzed.The results demonstrate that the application of rotation effectively reduces the solidification time and increases the heat release rate of the system,but the total heat release decreases slightly in individual solidification cycles.The solidification time of phase change materials at 0.5 r/min is reduced by 78.1%compared with that under static state,while the heat release rate is 4.45 times that under static state.However,the total heat release decreases by 2.52%.The research provides guidance for the design and application of rotation mechanism in triplex-tube thermal energy storage system.
作者
王凡
杜昭
阳康
黄昕宇
郭俊菲
杨肖虎
WANG Fan;DU Zhao;YANG Kang;HUANG Xinyu;GUO Junfei;YANG Xiaohu(China Northwest Architecture Design and Research Institute Co.,Ltd.,Xi’an 710061,China;School of Human Settlements and Civil Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2023年第2期12-20,共9页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目(51976155)。
关键词
三管潜热储能系统
潜热储能
旋转
数值模拟
凝固性能
triplex-tube thermal energy storage system
latent heat energy storage
rotation mechanism
numerical simulation
solidification performance