期刊文献+

基于随机森林模型内脏脂肪等级相关指标分析

Analysis of indicators related to visceral fat index based on the random forest model
原文传递
导出
摘要 目的探讨基于随机森林模型分析内脏脂肪等级的相关指标。方法本研究为横断面研究,选取2021年3—9月在黑龙江省医院健康管理中心进行体检的医院职工(包括在职职工和退休职工)共617例的各项实验室指标以及体成分分析各项指标,按照2∶1的比例将样本分为训练集(411例)和测试集(206例),模型共纳入预测变量110个,使用训练集数据进行随机森林模型构建,测试集数据进行模型验证,选择最优节点数和决策树数目,对构建模型的预测性能进行评价,同时选取重要性在前10位的相对重要因子进行下一步的研究。按内脏脂肪等级,对617名研究对象再次进行分组:内脏脂肪等级正常组和内脏脂肪等级偏高组,进一步分析前10位相对重要因子在组间的差异。结果随机森林模型的最优节点数为39、决策树数目为300。模型在测试集上的准确率为83.3%、精确率为73.9%、灵敏度为89.4%、特异度为78.7%,其受试者工作特征曲线下面积为0.881(95%CI:0.832~0.931)。模型中前10位相对重要因子依次为:体重指数、性别、年龄、尿酸、红细胞计数、单核细胞计数、C肽、癌胚抗原、糖化血红蛋白、谷氨酰转肽酶。内脏脂肪等级偏高组的体重指数、年龄、尿酸、红细胞计数、单核细胞计数、C肽、癌胚抗原、糖化血红蛋白、谷氨酰转肽酶水平均高于内脏脂肪等级正常组(均P<0.05);内脏脂肪等级偏高的发生率男性大于女性(P<0.05)。结论本研究构建的内脏脂肪等级的随机森林预测模型表现良好,内脏脂肪与机体肝功能、胰岛功能、免疫功能的改变均有关系。 Objective To explore indicators related to visceral fat index by constructing a random forest model.Methods In this cross-sectional study,the laboratory measures and body composition analysis records of 617 hospital employees(in-service and retired)who underwent physical examination in Heilongjiang Provincial Hospital Health Management Center from March to September 2021 were selected.The subjects were divided into a training set(n=411)and a test set(n=206)with the ratio of 2∶1.A total of 110 predictors were included in the model.The model was constructed with the training set and was evaluated with the test set.The optimal number of nodes and decision trees were selected to evaluate the prediction performance of the optimal model.And the top 10 relatively important factors were selected for further investigation.The 617 participants were further divided in to groups according to the visceral fat index:the normal or high visceral fat index group,and the differences of the top 10 relatively important factors were further compared between the two groups.Results The optimal number of nodes of the final random forest model was 39 and the number of decision trees was 300.The accuracy,precision,sensitivity and specificity of the model was 83.3%,73.9%,89.4%and 78.7%,respectively.The area under the receiver operating characteristic curve and 95%confidence interval of the model was 0.881(0.832-0.931).The top 10 relatively important factors in the model were body mass index,gender,age,serum uric acid,red blood cell count,monocyte cell count,C-peptide,carcinoembryonic antigen,glycosylated hemoglobin and glutamyl transpeptidase.There were significant differences in the up-mentioned 10 indicators between the subjects with normal and high visceral fat index(all P<0.05).Conclusions The random forest model built in this study has good performance in predicting visceral fat index,and visceral fat is related with changes in liver function,pancreas function and immune function.
作者 陈海军 刘翟 史越 李雨泽 郭洪霞 鲍金华 许超蕊 张堃 Haijun Chen;Di Liu;Yue Shi;Yuze Li;Hongxia Guo;Jinhua Bao;Chaorui Xu;Kun Zhang(Department of Computed Tomography,Heilongjiang Provincial Hospital,Harbin 150036,China;Wuhan Institute of Virology,Chinese Academy of Sciences,Wuhan 430071,China;Department of Clinical Nutrition,Heilongjiang Provincial Hospital,Harbin 150036,China;Liushun Community Health Services Center,Heilongjiang Provincial Hospital,Harbin 150036,China)
出处 《中华健康管理学杂志》 CAS CSCD 2023年第1期41-46,共6页 Chinese Journal of Health Management
基金 黑龙江省自然科学基金联合引导项目(LH2021H069) 黑龙江省卫生健康委科研课题(20211212020239)。
关键词 内脏脂肪等级 体重指数 随机森林预测模型 机器学习模型 Visceral fat index Body mass index Random forest model Machine learning model
  • 相关文献

参考文献13

二级参考文献117

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部