期刊文献+

Derivative-extremum analysis of current-potential curves showing electrochemical kinetics in the full reversibility range

原文传递
导出
摘要 Derivative-extremum analysis(DEA) of j-E curves is a newly proposed method of half wave potential(E1/2) and activation feature extraction from steady-state voltammetry. Here, the DEA is demonstrated to be valid in the full range of reversibility using numerical simulations with a derived universal electrode equation, providing a novel perspective of electrochemical kinetics in the reversibility domain. The results reveal that E1/2is a better choice of the reference potential instead of equilibrium potential(Eeq) in electrode equations, especially since Eeqis meaningless in an irreversible case. The equations referenced with standard potential, E1/2and Eeq, are summarized in three tables, and their applications in parameter determinations are specified. Finally, reversibility is proved to be a relative measure between kinetic slowness and mass transport of electroactive species, and the reversibility classifications are proposed according to the DEA feature in the reversibility domain. This work, based on the DEA principle, refines the electrode equation forms and generalizes their applicability in the full range of reversibility.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期544-549,共6页 中国化学快报(英文版)
基金 financially supported by the National Natural Science Foundation of China (Nos. 52131003, 52170059, 51808526, 51727812)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部