期刊文献+

基于金融文本情绪挖掘的Black-Litterman投资组合模型研究——以东方财富股吧发帖文本和我国A股市场为例 被引量:3

Research on Black-Litterman portfolio model based on financial text sentiment mining——Evidence from the posting text of eastmoney stock forum and the A share market
下载PDF
导出
摘要 互联网时代下,越来越多投资者开始在网络社区,特别是在金融投资类社区中发表自己的投资观点与看法,由此产生的海量金融文本数据具有较高的研究价值,如何将这些金融文本数据加以利用已成为时下金融投资领域的研究热点。本文探究了如何将东方财富股吧中的投资者发帖文本转化为对应的情绪指标,并基于此形成投资者意见,在Black-Litterman模型框架下构建考虑金融文本情绪信息的投资组合模型。具体来讲,首先利用网络爬虫从东方财富股吧中获取富时中国A50成分股对应的股吧发帖文本数据,并进行数据预处理,随后运用词典法和朴素贝叶斯法分别提取出股吧发帖文本的情绪指标;进一步将情绪指标、股票收盘价和成交量三项指标作为特征变量,使用回归随机森林算法对股票的未来收益率进行预测;最后将预测得到的未来收益率作为投资者观点,并置于Black-Litterman模型中构建考虑金融文本情绪信息的投资组合模型。回测结果显示,使用朴素贝叶斯法构建的基于金融文本情绪挖掘的投资组合模型有更好的绩效表现。 In the Internet age,more and more investors are beginning to express their investment opinions in online communities,especially in financial investment communities.The resulting massive financial text data has high research value.How to apply these financial text data has become the current research hotspots in the field of financial investment.This article explores how to convert investor posts in the Eastmoney Stock Forum into corresponding sentiment indicators,and form investor opinions based on this,and builds a portfolio model that considers financial text sentiment information under the framework of the Black-Litterman model.Specifically,we first use web crawlers to crawl the post text data of FTSE China’s A50 constituent stocks from the Eastmoney Stock Forum,and perform data preprocessing.Then,the sentiment indicators of the post text is extracted by using the dictionary method and the Naive Bayes method.Furthermore,three indicators of sentiment index,stock closing price and trading volume are taken as characteristic variables,and the random forest regression algorithm is used to predict the future return rate of stocks.Finally,the predicted future return rate is taken as the investor’s point of view,and is put into the framework of Black-Litterman model to construct a new portfolio model considering the emotional information of financial text.The backtest results show that the financial text sentiment mining portfolio model based on the Naive Bayes method has better performance.
作者 徐维军 黄静龙 付志能 张卫国 XU Weijun;HUANG Jinglong;FU Zhineng;ZHANG Weiguo(School of Business Administration,South China University of Technology,Guangzhou 510641,Guangdong,China;Guangzhou Financial Services Innovation and Risk Management Research Base,Guangzhou 510641,Guangdong,China)
出处 《运筹学学报》 CSCD 北大核心 2022年第4期1-14,共14页 Operations Research Transactions
基金 国家自然科学基金面上项目(Nos.71771091,71171086) 国家自然科学基金重点国际(地区)合作与交流项目(No.71720107002) 广东省基础与应用基础研究基金(No.2019A1515011752) 科技部科技创新2030-“新一代人工智能”重大项目(No.2020AAA0108404)。
关键词 投资组合 BLACK-LITTERMAN模型 投资者情绪 文本挖掘 回归随机森林 portfolio Black-Litterman model investor sentiment text mining random forest regression
  • 相关文献

参考文献7

二级参考文献111

共引文献113

同被引文献19

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部