期刊文献+

基于深度学习的催化裂化装置产品收率预测 被引量:1

FCC UNIT PRODUCT YIELD PREDICTION MODEL BASED ON DEEP LEARNING
下载PDF
导出
摘要 催化裂化装置对炼厂生产效益关系重大,准确预测并优化其产品收率和生焦产率对提高装置效益,改善全厂总流程具有重要意义。通过采用深度学习中梯度树(GBDT)算法和机器学习中神经网络(ANN)算法,基于系统内多家炼厂的催化裂化装置生产数据,建立了收率预测模型,总结了针对生产数据的数据处理经验。结果表明:基于深度学习的梯度树算法在预测效率、准确性和稳定性更好,使用人工智能方法能基于大数据准确预测装置产品收率,有助于开展基于数据模型的装置操作优化和全厂总流程优化,提高全厂经济效益。 Catalytic cracking unit has a significant impact on refinery production efficiency.Accurate prediction and optimization of its product yield and coke yield is important to improve the efficiency of the unit and the overall process flow of the refinery.In this paper,a yield prediction model was developed based on the production data from the FCC units in several refineries of SINOPEC by applying Gradient Boosting Decision Tree(GBDT)algorithm in deep learning algorithm and the neural network(ANN)algorithm to summarize the data processing experience for production data.The results show that the gradient tree algorithm based on deep learning performs better in prediction efficiency,accuracy and stability.Artificial intelligence methods can accurately predict product yield based on big data,help to carry out unit operation optimization and plant-wide overall process flow optimization based on data model,and improve plant-wide economic efficiency.
作者 周宇阳 Zhou Yuyang(SINOPEC Engineering Incorporation,Beijing,100101)
出处 《石油化工设计》 CAS 2023年第1期44-51,I0003,共9页 Petrochemical Design
关键词 深度学习 催化裂化 人工智能 操作优化 deep learning catalytic cracking/FCC artificial intelligence operation optimization
  • 相关文献

参考文献4

二级参考文献102

  • 1许友好,张久顺,马建国,龙军.生产清洁汽油组分并增产丙烯的催化裂化工艺[J].石油炼制与化工,2004,35(9):1-4. 被引量:79
  • 2Ph.D.Candidate:Sun JianXi’an University of Technolgy, Xi’an 710048, ChinaSupervisor:Yu Changzhao (Tsinghua University, Beijing 100084, China)Li Yuzhu (Tsinghua University, Beijing 100084, China)Chen Changzhi (Tsinghua University, Beijing 100084, China)Members of Dissertation Defense Committee:Gao Jizhang (China Institute of Water Resources and Hydropower Research), ChairmanLi Guifen (China Institute of Water Resources and Hydropower Research)Cui Guangtao (Tianjing University)Wang Xingkui (Tsinghua University)Yu Changzhao (Tsinghua University)Li Yuzhu (Tsinghua University)Chen Changzhi (Tsinghua University).FLOOD DISCHARGE AND ENERGY DISSIPATION BY JETS FROM OUTLETS IN HIGH ARCH DAM[J].Journal of Hydrodynamics,2003,15(1):122-122. 被引量:39
  • 3李再婷,蒋福康,闵恩泽,汪燮卿.催化裂解制取气体烯烃[J].石油炼制,1989,20(7):31-34. 被引量:15
  • 4何小荣,李初福,陈丙珍,张秋怡,陈勃,龚真直.石化企业生产计划图形建模优化系统[J].计算机与应用化学,2006,23(1):1-8. 被引量:16
  • 5侯卫锋,苏宏业,胡永有,褚健.Modeling, Simulation and Optimization of a Whole Industrial Catalytic Naphtha Reforming Process on Aspen Plus Platform[J].Chinese Journal of Chemical Engineering,2006,14(5):584-591. 被引量:14
  • 6Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engi- neering, 2014, 26(1): 97-107. 被引量:1
  • 7Syed A R, Gillela K, Venugopal C. The future revolution on big data. International Journal of Advanced Research in Computer and Communication Engineering, 2013, 2(6): 2446-2451. 被引量:1
  • 8Condliffe J. The problem with big data is that nobody und- erstands it [Online], available: http://gizmodo.com/59062- 04/the-problem-wit h-big-dat a-is-t hat- nobody-understan- ds-it, April 30, 2012. 被引量:1
  • 9Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A H. Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute Report [Online], available: http://www.mckinsey.com/insig hts/mgi/research/technology_and_innovation/big_data_the_ next_frontier_for_innovation, June, 2011. 被引量:1
  • 10Halevi G, Moed H. The Evolution of big data as a research and scientific topic: overview of the literature. Special Issue on Big Data, Research Trends, 2012, (30): 1-37. 被引量:1

共引文献168

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部