摘要
目的基于某汽车在中国吐鲁番地区自然暴露的部件温度变化试验数据,预测该车在美国凤凰城地区气象环境下的汽车部件温度变化。方法把汽车部件的温度作为输出变量,提取影响汽车部件温度变化的关键特征(试验时间、大气温度、太阳辐照)作为输入变量,同时运用公式对不同纬度地区部件受到的太阳辐照进行修正,以消除地理位置的影响。利用Python等软件构建机器学习模型,用吐鲁番试验数据训练模型,然后预测该车部件在美国凤凰城地区的温度变化。结果梯度提升机模型具有良好的泛化能力和预测精度,其预测值与实际值的平均绝对误差均在3.3°以内,拟合优度R^(2)均大于0.90。BP神经网络和随机森林算法模型也具有较好的预测精度。结论利用汽车在我国试验站点进行的自然暴露试验数据,可以预测该汽车部件在国外相似地区气象条件下的温度变化。该研究对于依据汽车部件在我国的自然暴露试验结果预测其他国家相似地区自然环境下汽车部件的温度变化具有一定的指导意义。
The work aims to predict the temperature changes of the parts of a car in the Phoenix area of the United States based on the test data of the temperature changes of the parts of the car naturally exposed in Turpan,China.With the temperature of the auto parts was taken as the output variable,the key features that affect the temperature changes of the auto parts(test time,atmospheric temperature,solar radiation)were extracted as the input variables.At the same time,a formula was used to correct the solar radiation of parts in different latitudes to eliminate the effects of geographic location.Software such as python were used to build a machine learning model.The test data in Turpan were used to train the model,and then the temperature change of the auto parts in the Phoenix area of the United States was predicted.The prediction results showed that the gradient boosting algorithm model had good generalization ability and prediction accuracy.The average absolute error between the predicted value and the actual value was within 3.3 degrees,and the goodness of fit R^(2 )was greater than 0.90.The BP neural network and random forest algorithm models also had good prediction accuracy.Using the natural exposure test data of a car at a test site in my country could predict the temperature changes of auto parts under the meteorological conditions in similar regions abroad.The research in this work has certain guiding significance for predicting the temperature changes of auto parts under the natural environment of similar regions in other countries based on the results of the natural exposure test of auto parts in China.
作者
李淮
张晓东
张传鸿
陈心欣
赵雪茹
揭敢新
LI Huai;ZHANG Xiao-dong;ZHANG Chuan-hong;CHEN Xin-xin;ZHAO Xue-ru;JIE Gan-xin(China National Electric Apparatus Research Institute Co.,Ltd,Guangzhou 510663,China;Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《装备环境工程》
CAS
2023年第2期102-109,共8页
Equipment Environmental Engineering
关键词
大数据分析
神经网络
机器学习
汽车自然暴露试验
big data analysis
neural network
machine learning
outdoor exposure test of vehicle