摘要
The Rotation and Curvature(RC)correction is an important turbulence model modifi-cation approach,and the Spalart-Allmaras model with the RC correction(SA-RC)has been exten-sively studied and used.As a multiplier of the modelling equation’s production term,the rotation function f_(r1)should have a cautiously designed value range,but its limit varies in different models and flow solvers.Therefore,the need of restriction is discussed theoretically,and the common range of f_(r1)is explored in Burgers vortexes.Afterwards,the SA-RC model with different limits is tested numerically.Negative f_(r1)always appears in the SA-RC model,and the difference between simula-tion results brought by the limits is not negligible.A lower limit of 0 enhances turbulence produc-tion,and therefore the vortex structures are dissipated faster and shrink in size,while an upper limit plays an opposite role.Considering that the lower limit of 0 usually promotes the simulation accu-racy and fixes the numerical defect,whereas the upper limit worsens the predictive performance in most cases,it is recommended to limit f_(r1)non-negative while utilizing the SA-RC model.In addi-tion,the RC-corrected model has a better prediction of the attached flow near curved walls,while the SA-Helicity model largely improves the simulation accuracy of three-dimensional large-scale vortices.The model combining both corrections has the potential to become more adaptive and more accurate.
基金
supported by the National Natural Science Foundation of China(Nos.51976006,51790513)
the Aeronautical Science Foundation of China(No.2018ZB51013)
the National Science and Technology Major Project,China(2017-II-003-0015)
the Open Fund from State Key Laboratory of Aerodynamics,China(No.SKLA2019A0101).