摘要
Extracting uranium from seawater offers opportunities for sustainable nuclear fuel supply,but the task is quite challenging due to the low uranium concentration(~3 ppb)in seawater.Here,based on the Knoevenagel condensation reaction of aldehyde and acetonitrile groups,a novel stable sp^(2)carbon-linked three-dimensional covalent organic framework(3D COF),TFPM-PDANAO was prepared as a porous platform for uranium extraction from seawater.The TFPM-PDAN-AO designed with regular 3D pore channel of 7.12 A provides a specific channel for uranyl diffusion,which exhibits high selectivity and fast kinetics for uranium adsorption.Meanwhile,the superior stability and optoelectronic properties enable it an excellent porous platform for uranium electroextraction.By applying alternating voltages between-5 and 0 V,uranyl ions can rapidly migrate and enrich into the porous structure of TFPM-PDAN-AO,then inducing the electrodeposition of uranium compounds to form the charge neutral species(Na_(2)O(UO_(3)H_(2)O)x)with an unprecedentedly high adsorption capacity of 4,685 mg g^(-1).This work not only expands the application prospects of functionalized 3D COFs,but also provides a technical support for the electrodeposition adsorption of uranium from seawater.
基金
supported by the National Natural Science Foundation of China(22036003,21976077)
the Natural Science Foundation of Jiangxi Province(20212ACB203009,20212ACB-203011)。