期刊文献+

基于深度自注意力网络的影像智能解译

Image Intelligent Interpretation based on Transformer
下载PDF
导出
摘要 传统深度神经网络主要关注影像的局部特征,忽视了影像上远距离的语义特征。深度自注意力网络能够打破局部感受野的限制,对影像上的长距离关系实现建模,因此,被广泛应用于近景与遥感影像智能解译。首先介绍了基于深度自注意力网络的影像处理基本原理。然后,重点分析深度自注意力网络在场景分类、目标识别和语义分割任务中的应用。最后,总结了深度自注意力网络在影像智能解译领域的未来发展方向。 Traditional deep neural networks mainly focus on local image feature,which ignores the longdistance semantic feature.Transformer has the ability to break the restriction of local receptive field and model the long-distance relationship on the image.Thus,it is widely used in close-range and remote sensing image intelligent interpretation.Firstly,illustrates the basic principle of transformer-based image processing.Then,the applications of transformer models used in scene classification,object detection and semantic segmentation are in-depth analyzed and compared.Finally,future development of transformer in image intelligent interpretation is concluded.
作者 李俊 吴长枝 齐晓飞 赵耀 Li Jun;Wu Changzhi;Qi Xiaofei;Zhao Yao(Speed China Technology Co.,Ltd.,Nanjing,China;Xi'an Surveying&Mapping Institute,Xi'an,China;PLA Strategic Support Force Information Engineering University,Zhengzhou,China)
出处 《科学技术创新》 2023年第1期124-128,共5页 Scientific and Technological Innovation
关键词 遥感影像 深度自注意力网络 智能解译 场景分类 目标识别 语义分割 remote sensing image transformer intelligent interpretation scene classification object detection semantic segmentation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部