期刊文献+

基于可穿戴设备自组网络的主从间同步节点发现算法研究

Research on SBMAS node discovery algorithm based on wearable device Ad Hoc network
下载PDF
导出
摘要 针对可穿戴设备能量受限的情况,为解决网络节点在发现过程中因单向发现而带来的能量损耗问题,提出一种主从间同步(SBMAS)节点发现算法。该算法采用多级分簇的思想使网络中节点形成分簇组网结构,在簇内网络节点进行时钟同步,降低了全网时钟同步的难度;每个节点内部维护一个时隙同步表,在约定时隙共同唤醒完成发现过程,减少了单向发现带来的损耗;通过内部时隙同步表来发现周围节点,提高节点的发现效率。通过与Disco算法、Birthday算法进行仿真对比,SBMAS算法在应用于可穿戴设备自组网络时表现良好,SBMAS算法的发现概率约提升13%,平均发现延迟约降低27%,能量损耗约降低33%。 In view of the energy limitation of wearable devices,a synchronization between master and slave(SBMAS)node discovery algorithm is proposed to solve the problem of energy loss caused by unidirectional discovery of network nodes. In the algorithm,the idea of hierarchical clustering is adopted to make the nodes in the network form a clustered networking structure,and clock synchronization is carried out among the network nodes in the cluster, which reduces the difficulty of clock synchronization in the whole network. Each node maintains a time slot synchronization table,and wakes up together in the agreed time slot to complete the discovery process,which reduces the loss caused by one-way discovery. The surrounding nodes are discovered by means of the internal time slot synchronization table,so as to improve the discovery efficiency of nodes. In comparison with Disco algorithm and Birthday algorithm,the SBMAS algorithm performs well when it is applied to wearable device Ad Hoc network. The discovery probability of the SBMAS algorithm is increased by about 13%,its average discovery delay is decreased by about 27%,and its energy loss is decreased by about 33%.
作者 赵健 李杰 孟德军 ZHAO Jian;LI Jie;MENG Dejun(School of Electronic and Information Engineering,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《现代电子技术》 2023年第5期78-84,共7页 Modern Electronics Technique
关键词 同步节点发现 无线自组网 可穿戴设备 分簇组网 时钟同步 仿真对比 synchronization node discovery wireless Ad Hoc network wearable device clustering networking clock synchronization simulation contrast
  • 相关文献

参考文献5

二级参考文献35

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部