摘要
利用微气泡-电催化协同氧化技术对高浓度垃圾渗滤液进行降解研究,考察了电流密度、pH、微气泡通气量等工艺条件对处理高浓度垃圾渗滤液的影响,对比研究了单一使用微汽泡、双氧水、电催化及其双组合协同工艺方案去除COD和氨氮的效果,并采用Design Expert 8软件进行响应面优化协同氧化工艺。结果表明,响应面预测的最优工艺条件为:电流密度为33.3 mA/cm^(2)、通气量为8.5 L/min、渗滤液初始pH 8.5,在该条件下COD和氨氮的去除率分别为75.3%和97.1%,与预测值(COD为75.0%,氨氮去除率为95.4%)基本相符。
Microbubble-electrocatalytic synergic oxidation technology is employed to study the degradation of high concentration of landfill leachate.The influences of current density,pH,microbubble ventilation and other technological conditions on the treatment of high concentration of landfill leachate are investigated.The removal effects of COD and ammoniacal nitrogen by microbubble,hydrogen peroxide,electrocatalysis and their double combination synergic process respectively are compared and studied.The synergic co-oxidation process is optimized in response surface by using Design Expert 8 software.The optimal process conditions by response surface prediction are as follows:the current density is 33.3 mA·cm^(-2),the ventilation is 8.5 L·min^(-1),and the initial pH of the leachate is 8.5.Under these conditions,the removal rates of COD and ammoniacal nitrogen are 75.3%and 97.1%,respectively,which is basically consistent with the predicted values.
作者
梁正义
黄华林
梁斌
周俊华
黄柠
黄慨
LIANG Zheng-yi;HUANG Hua-lin;LIANG Bin;ZHOU Jun-hua;HUANG Ning;HUANG Kai(Guangxi Jiangyi Environmental Technology Co.,Ltd.,Nanning 530000,China;State Key Laboratory for Enzymatic Hydrolysis of Non-food Biomass,National Engineering Research Center for Non-food Biomass Energy,Guangxi Key Laboratory of Biomass Refining,Guangxi Academy of Sciences,Nanning 530007,China;Joint Laboratory of Integrated Ecological Environment Management and Intelligent Low-Carbon Management Technology,Institute of Eco-Environmental Research,Guangxi Academy of Sciences,Nanning 530007,China)
出处
《现代化工》
CAS
CSCD
北大核心
2023年第2期155-162,共8页
Modern Chemical Industry
基金
广东-广西粤桂联合基金重点项目(2020B1515420005)
广西重大专项项目(桂科AA18242006-3)
生态环境综合治理与智能化低碳管理技术联合实验室2021年度重点项目(XYD-KXY-2021LH01)。
关键词
垃圾渗滤液
COD
氨氮
微气泡-电催化
协同氧化
landfill leachate
COD
ammoniacal nitrogen
microbubble-electrocatalysis
synergistic oxidation