期刊文献+

改进的DetNet大规模MIMO检测器

Modified DetNet Massive MIMO Detector
下载PDF
导出
摘要 对DetNet结构进行改进以提升大规模MIMO(Multiple-Input Multiple-Output)信号检测性能。首先,去除输入端的冗余向量简化网络中每个检测单元的结构;其次,为了进一步提升网络性能,借鉴随机森林在每个决策树的输入端引入随机性的思想,通过复制网络将原网络中的检测单元扩充为两个,构造成孪生网络的结构,并在其输入端设置不同的初值向量。仿真结果表明,结构优化后的网络比原DetNet具有一定的性能提升。 The DetNet structure is modified to enhance the massive multiple-input multiple-output(MIMO)signal detection performance.Firstly,the structure of each detection unit in the network is simplified by removing the redundant vectors at the input.Secondly,to further improve the network performance,the idea of random forest is used which can introduce randomness at the input of each decision tree.Specifically,the detection unit in the original network is doubled by replication to construct the siamese network and different initial value vectors are introduced at the input.The simulation results show that the optimized network achieves a certain performance improvement over the original DetNet.
作者 李素月 贾鹏 王安红 LI Suyue;JIA Peng;WANG Anhong(School of Electronic Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《电讯技术》 北大核心 2023年第2期220-225,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61501315,62072325)。
关键词 大规模MIMO 信号检测 深度学习 孪生网络 迫零算法 massive MIMO signal detection deep learning siamese network zero forcing algorithm
  • 相关文献

参考文献3

二级参考文献50

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 3Breiman L. Bagging Preditors [J].Machine Learning, 1996,24(2). 被引量:1
  • 4Dietterich T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization [J].Machine Learning, 2000,40(2). 被引量:1
  • 5Ho T K. The Random Subspace Method for Constructing Decision Forests [J].Trans. on Pattern Analysis and Machine Intelligence, 1998,20 (8). 被引量:1
  • 6Amit Y, Gernan D. Shape Quantization and Recognition with Randomized Trees[J]. Neural Computation, 1997,9(7). Breiman L Random Forest[J]. Machine Learning, 2001,45(1). 被引量:1
  • 7Breiman L. Random Forests[J]. Machine Learning, 2001,45(1). 被引量:1
  • 8Tibshirani tL Bias, Variance, and Prediction Error for Classification Rules[C]. Technical Report, Statistics Department, University of Toronto, 1996. 被引量:1
  • 9Wolpert D H, Macready W G. An Efficient Method to Estimate Bagging's Generalization Error[J]. Machine Learning, 1999,35(1). 被引量:1
  • 10Breiman L. Out-of-bag Estimation[EB/OL]. [2010- 06- 30]. http//stat, berkeley, edu/ pub/ users/ breiman / OOB estimation, ps. 被引量:1

共引文献818

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部