期刊文献+

首诊未治疗男性2型糖尿病患者脑白质网络拓扑特征研究 被引量:2

The Topological Characteristics of White Matter Brain Networks in First Diagnosed and Untreated Male Patients with Type 2 Diabetes Mellitus
原文传递
导出
摘要 目的比较首诊未经药物治疗男性2型糖尿病(T_(2)DM)患者与健康对照者脑白质网络拓扑属性的差异,以寻找与糖尿病相关的脑网络变化特征。方法搜集24例首诊未经药物治疗男性T_(2)DM患者及25名健康对照者的一般人口学和临床资料以及大脑MRI数据。使用FSL软件对结构磁共振成像(sMRI)、扩散张量成像(DTI)数据进行预处理。基于自动解剖标签(AAL)模板将全脑灰质分割为90个区域,定义为脑白质网络的90个节点;另外,基于确定性纤维追踪方法使用Trackvis软件对DTI数据进行全脑白质追踪,将不同脑区间的白质纤维连接定义为脑网络节点之间的边。基于MATLAB软件使用BCT软件包计算所有被试脑网络中90个节点的聚类系数和最短路径长度以及网络的平均聚类系数和最短路径长度。最后,使用SPSS软件对两组间各网络属性值进行双样本t检验,并使用FDR方法对结果进行多重比较校正。结果脑网络的平均聚类系数和最短路径长度在两组间未见统计学差异。左侧背外侧额上回与额中回、右侧岛盖部额下回、中央后回、颞上回颞极、楔叶、枕中回、海马聚类系数以及左侧楔叶最短路径长度在组间存在差异。其中,仅右侧海马聚类系数组间差异通过FDR校正,表现为患者组右侧海马聚类系数较对照组显著性下降。结论首诊未经药物治疗男T_(2)DM患者大脑中与右侧海马存在白质纤维连接区域的聚集程度发生下降,可能导致大脑中以右侧海马为中心的局部网络信息处理效率发生下降。 Objective To explore the differences in the topological properties of white matter brain networks between male patients with type 2 diabetes mellitus and healthy controls,and to find the altered characteristics of brain network related to diabetes.Methods The demographic,clinical data and magnetic resonance imaging(MRI)data of 24 first diagnosed and untreated male patients with male 2 type diabetes and 25 healthy controls were collected.The preprocess of structural magnetic resonance imaging(sMRI)and diffusion tensor imaging(DTI)data were conducted by the software of FSL.The whole gray matter of brain was divided into 90 regions based on the automatic anatomical label(AAL)template,which were defined as 90 nodes of the white matter brain network.In addition,the software of Trackvis was used to track the whole brain white matter based on DTI data by the method of deterministic fiber tracking,and the white matter fibers connected different brain regions were defined as the edges between the nodes of brain network.Based on the software of MATLAB,BCT software package was used to calculate the clustering coefficient and shortest path length of 90 nodes in the brain network,as well as the average clustering coefficient and shortest path length of the network.Finally,two sample t-tests were performed to compare the differences of topological measures between brain networks of two groups by the software of SPSS,and FDR method was performed to address the problem of multiple comparisons.Results There was no significant difference in average clustering coefficient and shortest path length between the two groups.The clustering coefficients of left superior frontal gyrus(dorsolateral)and middle frontal gyrus,right inferior frontal gyrus,postcentral gyrus,superior temporal gyrus(temporal pole),cuneus,middle occipital gyrus,hippocampus and the shortest path length of left cuneus showed differences between groups.However,only the differences in the cluster coefficient of right hippocampus between groups survived FDR correction.T
作者 徐琰 项子良 张阳 蒋威 蒋琳 张也乐 孙志兴 陈建淮 XU Yan;XIANG Ziliang;ZHANG Yang(Department of Andrology,The Affiliated Hospital of Nanjing University of Chinese Medicine,Jiangsu Province Hospital of Chinese Medicine,Nanjing,Jiangsu Province 210004,P.R.China)
出处 《临床放射学杂志》 北大核心 2022年第12期2166-2170,共5页 Journal of Clinical Radiology
基金 江苏高校优势学科建设工程资助项目(编号:JX10231801)。
关键词 2型糖尿病 扩散张量成像 白质 脑网络 海马 Type 2 diabetes mellitus Diffusion tensor imaging White matter Brain network Hippocampus
  • 相关文献

参考文献3

二级参考文献32

  • 1Yang SH,Dou KF,Song WJ. Prevalence of diabetes among men and women in China[ J]. N Engl J Med,2010,362:2425-2426. 被引量:1
  • 2Reske-Nielsen E, Lundbaek K, Rafaelsen OJ. Pathological changes in the central and peripheral nervous system of young long-term diabet- ics : I. Diabetic encephalopatby [ J 1. Diabetologia, 1966,1:233-241. 被引量:1
  • 3Zhang Y, Zhang X, Zhang J, et al. Gray matter volume abnormalities in type 2 diabetes mellitus with and without mild cognitive impair- ment[ J]. Neurosci Lett ,2014,562 : 1-6. 被引量:1
  • 4Wang CX, Fu KL, Liu H J, et al. Spontaneous brain activity in type 2 diabetics revealed by amplitude of low-frequency fluctuations and its association with diabetic vascular disease : a resting-state FMRI stud- y[J]. PLoS One,2014,9 :e108883. 被引量:1
  • 5Ashburuer J, Friston KJ. Why voxel-based morphometry should be used [ J ]. Neuroimage ,2001,14 : 1238-1243. 被引量:1
  • 6Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI [ J ]. Magn Reson Med, 1995,34:537-541. 被引量:1
  • 7Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis[ J]. Neuroimage ,2004,22:394-400. 被引量:1
  • 8Yan CG, Cheung B, Kelly C, et al. A comprehensive assessment of regional variation in the impact of head micromovements on function- al connectomics[ J]. Neuroimage ,2013,76 : 183-201. 被引量:1
  • 9Ashburner J. A fast diffeomorphic image registration algorithm [ J ]. Neuroimage,2007 ,38 :95-113. 被引量:1
  • 10van Duinkerken E, Schoonheim MM, Sanz-Arigita E J, et al. Resting- state brain networks in type 1 diabetic patients with and without mi- croangiopathy and their relation to cognitive functions and disease variables[ J]. Diabetes,2012,61 : 1814-1821. 被引量:1

共引文献22

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部