期刊文献+

融合实体描述与路径信息的知识图谱表示学习模型

Knowledge graph representation learning model combining entity description and path information
下载PDF
导出
摘要 知识图谱表示学习方法是将知识图谱中的实体和关系通过特定规则表示成一个多维向量的过程。现有表示学习方法多用于解决单跳知识图谱问答任务,其多跳推理能力无法满足实际需求,为提升多跳推理能力,提出一种融合实体描述与路径信息的知识图谱表示学习模型。首先通过预训练语言模型RoBERTa得到融合实体描述的实体、关系表示学习向量;其次利用OPTransE将知识图谱转化成融入有序关系路径信息的向量。最后构建总能量函数,将针对实体描述和路径信息的向量进行融合。通过实验分析与对比该模型在链路预测任务上与主流知识图谱表示学习模型的性能,验证了该模型的可行性与有效性。 Knowledge graph representation learning is a process of representing knowledge graph entities and relations in a multidimensional vector through specific rules. Existing representation learning methods are mostly used to solve the single-hop knowledge graph question-and-answer task, but their multi-hop reasoning ability cannot meet the actual demand. To improve the multi-hop reasoning ability, a knowledge graph representation learning model combining entity description and path information is proposed. First, the learning vector of entity and relation representation is obtained using the pre-training language model RoBERTa. Second, OPTransE is used to transform the knowledge graph into a vector integrating the path information of an ordered relation. Finally, the total energy function is constructed to fuse the vectors of entity description and path information. The feasibility and validity of the model are verified by comparing its performance in a link prediction task with that of the mainstream knowledge graph representation learning model.
作者 李军怀 武允文 王怀军 李志超 徐江 LI Junhuai;WU Yunwen;WANG Huaijun;LI Zhichao;XU Jiang(Collaborative Innovation Center of Modern Equipment Green Manufacturing in Shaanxi Province,Xi’an University of Technology,Xi’an 710048,China;School of Computer Science and Engineering,Xi’an University of Technology,Xi’an 710048,China;China National Heavy Machinery Research Institute Co.,Ltd.,Xi’an 710032,China)
出处 《智能系统学报》 CSCD 北大核心 2023年第1期153-161,共9页 CAAI Transactions on Intelligent Systems
基金 国家重点研发计划项目(2018YFB1703000) 陕西省现代装备绿色制造协同中心自主研发或开放基金项目(112-256092104)。
关键词 知识图谱 表示学习 多维向量 多跳推理能力 实体描述 路径信息 能量函数 向量融合 knowledge graph expression learning multidimensional vector multi-hop reasoning ability entity description path information energy function vector fusion
  • 相关文献

参考文献5

二级参考文献118

  • 1Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41. 被引量:1
  • 2Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250. 被引量:1
  • 3Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19. 被引量:1
  • 4Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127. 被引量:1
  • 5Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. 被引量:1
  • 6Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394. 被引量:1
  • 7Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008. 被引量:1
  • 8Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119. 被引量:1
  • 9Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202. 被引量:1
  • 10Zhao Y, Liu Z, Sun M. Representation learning for measuring entity relatedness with rich information [C] //Proc of IJCAI. San Francisco, CA: Morgan Kaufmann, 2015: 1412-1418. 被引量:1

共引文献462

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部