摘要
基于预训练模型BERT和UniLM MASK提出一个可应用于中医药问题生成的生成式BERT,结合基于标签平滑、对抗扰动和知识蒸馏的多策略机制,以及多模型软投票的集成策略,提高生成式BERT的性能表现和泛化能力,有助于中医药问题生成任务取得更好效果以及中医药文本数据的充分利用。
Based on the pre-training model BERT and UniLM MASK,the paper proposes a generative BERT which can be applied to the generation of traditional Chinese medicine questions.Combined with the multi-strategy mechanism based on label smoothing,anti-disturbance and knowledge distillation,and the integrated strategy based on multi-model soft voting,the performance and generalization ability of the generative BERT are further improved.It is helpful for the question generation task of traditional Chinese medicine to achieve better results and to make full use of traditional Chinese medicine text data.
作者
杨祖元
方思凡
陈禧琛
李珍妮
YANG Zuyuan;FANG Sifan;CHEN Xichen;LI Zhenni(School of Automation,Guangdong University of Technology,Guangzhou 510006,China)
出处
《医学信息学杂志》
CAS
2022年第11期55-62,共8页
Journal of Medical Informatics
关键词
问题生成
深度学习
预训练
中医药
BERT
question generation
deep learning
pre-training
traditional Chinese medicine
BERT