期刊文献+

基于Faster-RCNN深度学习的茶叶嫩芽多维度识别及其性能分析 被引量:2

Tea-Buds Multi-dimensional Recognition with Faster-RCNN Deep Learning Method and Its Performance Analysis
下载PDF
导出
摘要 茶叶嫩芽自动识别分类是实现采茶机器人精采名优茶的关键技术。由于茶叶嫩芽与背景中茶叶差别很小,且茶叶嫩芽形状多样,有一芽一叶和一芽二叶等多种形式,给自动识别带来很大难度。基于Faster-RCNN深度学习神经网络模型多维度进行茶叶嫩芽识别。首先对网络性能进行分析,选取较优的网络模型;在此基础上,研究一幅图像中包含嫩芽的不同数量、形态、拍摄角度、光照条件多维度对识别性能的影响。结果发现,光照条件和拍摄角度对嫩芽识别影响较大。所采用的Faster-RCNN深度学习模型对45°角度拍摄、晴天环境下单株集中一芽两叶的茶叶嫩芽识别效果最佳,同时阴天和90°拍摄时识别效果较差。研究为后续实现机器人现代化智能化的名优茶精采提供了技术支持。 The automatic identification and classification of tea-buds was the key technology for picking famous brand tea with robots.There was little difference between tea-buds and background tea-leaves,and the shapes of tea-buds have one-bud-one-leaf and onebud-two-leaves,which brought great difficulty to identify tea-buds.The paper utilizes Faster-RCNN deep learning neural network to identify tea-buds in multiple dimensions.The network performance was analyzed and a better network model was selected firstly.After that,the identification performance of the selected network was studied.The effects of numbers and shapes of tea-buds,different shooting angles and lighting conditions on identification performance were studied.The results show that lighting conditions and shooting angles have a greater impact on the identification performance.Under sunny environment and 45°shooting angle,the one-bud-twoleaves in a single plant have the best identification result.While the identification performance is poor in the environment of cloudy and 90°shooting angle.The paper provides a potential technical support for the development of tea picking robots.
作者 许宝阳 高延峰 Xu Baoyang;Gao Yanfeng(Shanghai University of Engineering Science,Shanghai Collaborative Innovation Center of Intelligent Manufacturing Robot Technology for Large Components,Shanghai 201620,China)
出处 《农业装备与车辆工程》 2023年第2期19-24,共6页 Agricultural Equipment & Vehicle Engineering
基金 上海市自然科学基金(21010501600)。
关键词 茶叶嫩芽 深度学习 神经网络 目标识别 目标分类 tea bud deep learning neural networks target recognition target classification
  • 相关文献

参考文献7

二级参考文献56

  • 1NGIAM J, KHOSLA A, KIM M, et al. Muhimodal deep learning[ C ]//Proceedings of the 28th International Con- ference on Machine Learning ( ICML-11 ). [ S. 1. ]: [ s. n. ] ,2011:689 -696. 被引量:1
  • 2DAHL G E, YU D, DENG L, et al. Context-Dependent Pre-trained Deep Neural Networks for Large-Vocabulary Speech Recognition [ J ]. IEEE TraMs on Audio, Speech and Language Processing,2012,20( 1 ) :30 -42. 被引量:1
  • 3HINTON G, DENG L, YU D, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition:The Shared Views of Four Research Groups [ J ]. IEEE Signal Pro-cessing Magazine,2012,29 (6) : 82 - 97. 被引量:1
  • 4COMANICIU D,MEER P. An algorithm for data--driven bandwidth Selection [ J ]. IEEE Trans PAMI, 2003,24 (5) :281-288. 被引量:1
  • 5BENGIO Y. Practical recommendations for gradient-based training of deep architectures [ M ]. Berlin: Springer-Ver- lag,2012:437 - 478. 被引量:1
  • 6WITFEN I H,FRANK E,HALL M A. Data Mining:Prac- tical Machine Learning Tools and Techniques [ M ]. USA: Elsevier, 2011. 被引量:1
  • 7ARRIBAS J I, CID-SUEIRO J, ADALI T, et al. Neural architectures for parametric estimation of a posteriori probabilities by constrained conditional density functions [ C]//Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop. USA : IEEE, 1999:263 - 272. 被引量:1
  • 8SIMARD P,STEINKRAUS D, PIATr J C. Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis [ C ]//ICDAR 2003. Seotfland : IEEE, 2003:958 - 962. 被引量:1
  • 9汪建,杜世平.基于颜色和形状的茶叶计算机识别研究[J].茶叶科学,2008,28(6):420-424. 被引量:36
  • 10汪建.结合颜色和区域生长的茶叶图像分割算法研究[J].茶叶科学,2011,31(1):72-77. 被引量:34

共引文献250

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部