期刊文献+

人工智能对企业成本黏性的影响研究 被引量:13

Research on the impact of artificial intelligence on cost stickiness of enterprises
原文传递
导出
摘要 如何利用人工智能为传统产业转型升级和转变经济发展方式添薪续力已成为当下我国经济发展的重要议题。本文基于成本黏性视角,采用面板回归模型,实证检验人工智能对企业成本黏性的影响和作用机制。研究发现:(1)人工智能对企业成本黏性具有抑制效应,能够发挥降低成本的效果。(2)在调整成本较高和代理问题较严重的企业中,人工智能对企业成本黏性的抑制效应更显著,表明人工智能通过降低调整成本和缓解代理问题两条渠道影响企业成本黏性。(3)人工智能对企业成本黏性的抑制效应主要源自人工智能的商业应用,而人工智能研发与成本黏性没有显著关系。(4)在区分不同成本要素后,人工智能会抑制物质资源成本黏性,增加人力资源成本黏性。研究结论对于加快人工智能和实体企业的深度融合、深化供给侧结构性改革和推动经济高质量发展具有重要的参考和启示意义。 Accelerating the deep integration of AI and the real economy is an important engine for China to achieve leapfrog development of science and technology, industrial optimization and upgrading, and supply-side structural reform. How to use AI for the transformation and upgrading of traditional industries and the transformation of economic development mode has become an important issue in China′s economic development. Based on the perspective of cost stickiness, this paper empirically examines the impact and mechanism of AI on enterprise cost stickiness by taking A-share listed companies in Shanghai and Shenzhen from 2011 to 2018 as research samples.The main conclusions are as follows: First, AI has a restraining effect on enterprise cost stickiness and can play a role in reducing costs. Second, in the enterprises with higher adjustment cost and more serious agency problem, AI has a more significant inhibition effect on cost stickiness, indicating that AI can affect cost stickiness through reducing adjustment cost and alleviating agency problem. Third, the inhibition effect of AI on enterprise cost stickiness mainly comes from the commercial application of AI, and there is no significant relationship between AI research and development and cost stickiness. Fourth, after distinguishing different cost factors, AI will restrain the cost stickiness of material resources and increase the cost stickiness of human resources, indicating that AI will increase the demand for high-end technical talents while reducing the cost of materials.The possible research contributions of this paper are as follows: First, it innovatively adopts the method of combining text mining and artificial research and judgment to construct enterprise-level AI data, and distinguishes AI research and development from AI application mode, so as to provide reference for AI research at enterprise micro-level. Second, existing literature has explored the impact of AI on labor market and economic development from the macro level, while some literatures h
作者 陈红 王稳华 刘李福 胡耀丹 Chen Hong;Wang Wenhua;Liu Lifu;Hu Yaodan(School of Accounting,Yunnan University of Finance and Economics,Kunming 650221,Yunnan,China;Zhao Tong University,Zhaotong 657000,Yunnan,China;Business School,University of International Business and Economics,Beijing 100029,China)
出处 《科研管理》 CSSCI CSCD 北大核心 2023年第1期16-25,共10页 Science Research Management
基金 国家自然科学基金地区项目:“国有企业党委治理、外部治理环境与企业并购研究——基于混合所有制背景”(71662034,2017.01—2020.12) 国家自然科学基金地区项目:“数字化转型导向下的财务共享与公司价值创造研究”(72062033,2021.01—2024.12) 教育部人文社会科学基金项目:“年报问询监管与上市公司融资行为研究”(20YJC630043,2020.03—2023.03) 云南省科技厅基础研究青年项目:“党组织参与公司治理对民营企业投资活动的影响”(202001AU070057,2020.06—2023.06) 财政部2017年“会计名家培养工程”。
关键词 人工智能 成本黏性 调整成本 代理问题 artificial intelligence cost stickiness adjustment cost issue of agency
  • 相关文献

参考文献19

二级参考文献299

共引文献3340

同被引文献226

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部